Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biosci Bioeng ; 137(2): 85-93, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38155026

RESUMEN

A marine red yeast, Rhodosporidium sphaerocarpum, is generally used for the production of lipids and carotenoids. In a previous study, we demonstrated that a marine-derived R. sphaerocarpum GDMCC 60679 can efficiently remove ammonia nitrogen and exhibit multiple probiotic functions for shrimp, Litopenaeus vannamei. Here, we performed a genome assembly of the strain GDMCC 60679 using a combination of the data from Illumina PE and PacBio CLR reads. The genome has a size of 18.03 Mb and consists of 32 contigs with an N50 length of 1,074,774 bp and GC content of 63 %. The genome was predicted to contain 6092 protein-coding genes, 5962 of which were functionally annotated. Metabolic pathways responsible for the ammonia assimilation and the synthesis of lipids and carotenoids were particularly examined to explore and characterize genes contributing to these functions. Whole-genome sequence and annotation of the strain lays a foundation to reveal the molecular mechanism of its prominent biological functions and will facilitate us to further expand new applications of yeasts in Rhodosporidium.


Asunto(s)
Amoníaco , Productos Biológicos , Rhodotorula , Levaduras/metabolismo , Carotenoides/metabolismo , Nitrógeno , Lípidos , Anotación de Secuencia Molecular
2.
Fish Physiol Biochem ; 46(5): 1713-1727, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32514851

RESUMEN

Salinity is an important abiotic stress that affects metabolic and physiological activities, breed, development, and growth of marine fish. Studies have shown that cobia (Rachycentron canadum), a euryhaline marine teleost fish, possesses the ability of rapid and effective hyper/hypo iono- and osmoregulation. However, genomic studies on this species are lacking and it has not been studied at the transcriptome level to identify the genes responsible for salinity regulation, which affects the understanding of the fundamental mechanism underlying adaptation to fluctuations in salinity. To describe the molecular response of cobia to different salinity levels, we used RNA-seq analysis to identify genes and biological processes involved in response to salinity changes. In the present study, 395,080,114 clean reads were generated and then assembled into 65,318 unigenes with an N50 size of 2758 bp. There were 20,671 significantly differentially expressed genes (DEGs) including 8805 genes adapted to hypo-salinity and 11,866 genes adapted to hyper-salinity. These DEGs were highly represented in steroid biosynthesis, unsaturated fatty acid metabolism, glutathione metabolism, energy metabolism, osmoregulation, and immune response. The candidate genes identified in cobia provide valuable information for studying the molecular mechanism of salinity adaptation in marine fish. Furthermore, the transcriptomic sequencing data acts not only as an important resource for the identification of novel genes but also for further investigations regarding cobia biology.


Asunto(s)
Adaptación Fisiológica/genética , Perciformes/genética , Tolerancia a la Sal/genética , Análisis de Secuencia de ARN , Animales , Regulación de la Expresión Génica , Variación Genética , Tolerancia a la Sal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA