Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2806: 117-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676800

RESUMEN

Unlocking the heterogeneity of cancers is crucial for developing therapeutic approaches that effectively eradicate disease. As our understanding of markers specific to cancer subclones or subtypes expands, there is a growing demand for advanced technologies that enable the simultaneous investigation of multiple targets within an individual tumor sample. Indeed, multiplex approaches offer distinct benefits, particularly when tumor specimens are small and scarce. Here we describe the utility of two fluorescence-based multiplex approaches; fluorescent Western blots, and multiplex immunohistochemistry (Opal™) staining to interrogate heterogeneity, using small cell lung cancer as an example. Critically, the coupling of Opal™ staining with advanced image quantitation, permits the dissection of cancer cell phenotypes at a single cell level. These approaches can be applied to patient biopsies and/or patient-derived xenograft (PDX) models and serve as powerful methodologies for assessing tumor cell heterogeneity in response to therapy or between metastatic lesions across diverse tissue sites.


Asunto(s)
Inmunohistoquímica , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Inmunohistoquímica/métodos , Animales , Biomarcadores de Tumor/metabolismo , Ratones , Heterogeneidad Genética , Western Blotting/métodos , Análisis de la Célula Individual/métodos , Línea Celular Tumoral
2.
PLoS One ; 16(1): e0244422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33439902

RESUMEN

Here we adapt and evaluate a full-face snorkel mask for use as personal protective equipment (PPE) for health care workers, who lack appropriate alternatives during the COVID-19 crisis in the spring of 2020. The design (referred to as Pneumask) consists of a custom snorkel-specific adapter that couples the snorkel-port of the mask to a rated filter (either a medical-grade ventilator inline filter or an industrial filter). This design has been tested for the sealing capability of the mask, filter performance, CO2 buildup and clinical usability. These tests found the Pneumask capable of forming a seal that exceeds the standards required for half-face respirators or N95 respirators. Filter testing indicates a range of options with varying performance depending on the quality of filter selected, but with typical filter performance exceeding or comparable to the N95 standard. CO2 buildup was found to be roughly equivalent to levels found in half-face elastomeric respirators in literature. Clinical usability tests indicate sufficient visibility and, while speaking is somewhat muffled, this can be addressed via amplification (Bluetooth voice relay to cell phone speakers through an app) in noisy environments. We present guidance on the assembly, usage (donning and doffing) and decontamination protocols. The benefit of the Pneumask as PPE is that it is reusable for longer periods than typical disposable N95 respirators, as the snorkel mask can withstand rigorous decontamination protocols (that are standard to regular elastomeric respirators). With the dire worldwide shortage of PPE for medical personnel, our conclusions on the performance and efficacy of Pneumask as an N95-alternative technology are cautiously optimistic.


Asunto(s)
Máscaras , Equipo de Protección Personal , Personal de Hospital , COVID-19/epidemiología , COVID-19/prevención & control , Dióxido de Carbono/química , Diseño de Equipo , Espiración , Filtración , Humanos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...