Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem ; 439: 138078, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086234

RESUMEN

This study investigated the effects of ultrasound-assisted fermentation (UAF) on the preparation of antioxidant peptides (UAFP) from okara and examined their content, chemical structures, and antioxidant activity. After the optimal ultrasonic processing (time, 20 min; frequency, 45 KHz; power, 120 W/L), the peptide content yield reached the maximum of 12.36 ± 0.02 mg/mL, and their DPPH free radical scavenging rate was 65.15 ± 0.32 %. UAF increased the number of globular aggregates with deeper gullies, a looser structure, and higher porosity. The experiments conducted using the oxidative stress injury model of HepG2 cells showed that okara UAFP promoted cell growth and exerted a protective effect. Moreover, ultrasonic treatment remarkably improved the environmental stability (NaCl, glucose, sodium benzoate, temperature, pH, metal ions) and antioxidant activity of UAFP. Concisely, optimal ultrasonic processing can aid the fermentation of agroindustrial by-products to prepare antioxidant peptides, such as natural food antioxidant peptides from soybean waste.


Asunto(s)
Antioxidantes , Péptidos , Antioxidantes/química , Fermentación , Péptidos/química , Glycine max , Aditivos Alimentarios
2.
Compr Rev Food Sci Food Saf ; 22(4): 2773-2801, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37082778

RESUMEN

The characteristic flavor of fermented foods has an important impact on the purchasing decisions of consumers, and its production mechanisms are a concern for scientists worldwide. The perception of food flavor is a complex process involving olfaction, taste, vision, and oral touch, with various senses contributing to specific properties of the flavor. Soy-based fermented products are popular because of their unique flavors, especially in Asian countries, where they occupy an important place in the dietary structure. Microorganisms, known as the souls of fermented foods, can influence the sensory properties of soy-based fermented foods through various metabolic pathways, and are closely related to the formation of multisensory properties. Therefore, this review systematically summarizes the core microbiome and its interactions that play an active role in representative soy-based fermented foods, such as fermented soymilk, soy sauce, soybean paste, sufu, and douchi. The mechanism of action of the core microbial community on multisensory flavor quality is revealed here. Revealing the fermentation core microbiome and related enzymes provides important guidance for the development of flavor-enhancement strategies and related genetically engineered bacteria.


Asunto(s)
Alimentos Fermentados , Microbiota , Alimentos de Soja , Fermentación , Alimentos Fermentados/microbiología , Alimentos de Soja/análisis , Redes y Vías Metabólicas
3.
Food Chem ; 404(Pt A): 134583, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36257274

RESUMEN

Umami peptides are an important taste substance in fermented foods. However, in the absence of known microbiota-derived umami peptides, the understanding of the umami mechanism remains unclear. Tetragenococcus halophilus, a dominant fermentation bacteria, may be an important source of umami peptides. Accordingly, T. halophilus fermentation broth was fractioned by ethanol precipitation, gel chromatography, and reverse phase-high performance liquid chromatography. The isolated peptide fraction with the most intense umami taste was screened by amino acid composition and sensory analyses. Finally, three novel microbiota-derived peptides (DFE, LAGE, and QLQ) were identified, synthesized, and characterized for taste. Among them, only DFE had umami and umami-enhancing abilities improving multiple tastes. Molecular docking studies indicated that DEF binds to T1R1/T1R3 receptors through hydrogen bonding and electrostatic interactions involving receptor residues Ser332, Ser256, ASN41, His125, etc. This study highlights the critical role of microbiota-derived peptides in the umami taste of fermented foods.


Asunto(s)
Microbiota , Gusto , Simulación del Acoplamiento Molecular , Péptidos/química , Aminoácidos , Receptores Acoplados a Proteínas G/metabolismo
4.
J Food Sci ; 86(7): 3240-3251, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34118075

RESUMEN

Exploring the synergistic effect of docosahexaenoic acid (DHA) or conjugated linoleic acid (CLA) with caffeic acid (CA) on ameliorating oxidative stress, thereby introducing CA to DHA or CLA will contribute significantly to enhance the bioactivity. We observed that DHA or CLA with CA promoted the recovery of intact individual morphology and the decline of cavities inside the nucleus and apoptosis under the observation of confocal laser scanning microscopy and fluorescent inverted microscope. The activity of intracellular antioxidant enzymes catalase (CAT) and glutathione peroxidase (GSH-Px), lactate dehydrogenase (LDH) leakage, pyruvate and malondialdehyde and reactive oxygen species (ROS), cellular morphology, and cell cycle were analyzed. Our results showed that DHA or CLA with CA enhanced the activity of CAT and GSH-Px, decreased LDH leakage and the number of apoptotic, significantly inhibited (ROS-induced cellular injury. Cell arrest in G1 and G2 phase during cell mitosis was reduced by the measurement of flow cytometry. DHA or CLA combined with CA could markedly strengthen the free radical scavenging and endogenous antioxidant defense capacity on HepG2 cells. This study provides a new direction in the application of synergies to antioxidant compounds. PRACTICAL APPLICATION: Caffeic acid (CA) can synergize with docosahexaenoic acid (DHA) or conjugated linoleic acid (CLA) to enhance antioxidant capacity. This study highlighted an effect of ameliorating oxidative stress injury DHA or CLA with CA on HepG2 cells. The data indicated that DHA or CLA with CA might be used to relieve oxidative stress damage.


Asunto(s)
Ácidos Cafeicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Sinergismo Farmacológico , Ácidos Linoleicos Conjugados/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Quimioterapia Combinada , Células Hep G2 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...