Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405904, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960870

RESUMEN

Transformation of lignin to syngas can turn waste into treasure yet remains a tremendous challenge because of its naturally evolved stubborn structure. In this work, light-driven reforming of natural lignin in water for green syngas production is explored using Pt-decorated InGaN nanowires. Syngas is  yielded from the continuous evolution of •CH3 and •OH from photocatalytic reforming of lignin in water. Together with the superior optoelectronic attributes of Pt-decorated InGaN nanowires, the evolution rate of syngas approaches to 43.4 mol·g-1·h-1 with tunable H2/CO ratios and a remarkable turnover number (TON) of 150, 543mol syngas per mol Pt. Notably, the architecture demonstrates a high light efficiency of 12.1% for syngas generation under focused light without any extra thermal input. Outdoor test ascertains the viability of producing syngas with the only inputs of natural lignin, water, and sunlight, thus presenting a low-carbon route for synthesizing transportation fuels and value-added chemicals.

2.
Adv Sci (Weinh) ; : e2402651, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816938

RESUMEN

Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.

3.
Phytomedicine ; 129: 155591, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692075

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, characterized by a syndrome of uncontrolled systemic inflammation that often leads to significant morbidity and death. Anti-inflammatory is one of its treatment methods, but there is no safe and available drug therapy. Syringic acid (SA) is a natural organic compound commonly found in a variety of plants, especially in certain woody plants and fruits. In modern pharmacological studies, SA has anti-inflammatory effects and therefore may be a potentially safe and available compound for the treatment of acute lung injury. PURPOSE: This study attempts to reveal the protective mechanism of SA against ALI by affecting the polarization of macrophages and the activation of NF-κB signaling pathway. Trying to find a safer and more effective drug therapy for clinical use. METHODS: We constructed the ALI model using C57BL/6 mice by intratracheal instillation of LPS (10 mg/kg). Histological analysis was performed with hematoxylin and eosin (H&E). The wet-dry ratio of the whole lung was measured to evaluate pulmonary edema. The effect of SA on macrophage M1-type was detected by flow cytometry. BCA protein quantification method was used to determine the total protein concentration in bronchoalveolar lavage fluid (BALF). The levels of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α in BALF were determined by the ELISA kits, and RT-qPCR was used to detect the expression levels of IL-6, IL-1ß and TNF-α mRNA of lung tissue. Western blot was used to detect the expression levels of iNOS and COX-2 and the phosphorylation of p65 and IκBα in the NF-κB pathway in lung tissue. In vitro experiments were conducted with RAW267.4 cell inflammation model induced by 100 ng/ml LPS and A549 cell inflammation model induced by 10 µg/ml LPS. The effects of SA on M1-type and M2-type macrophages of RAW267.4 macrophages induced by LPS were detected by flow cytometry. The toxicity of compound SA to A549 cells was detected by MTT method which to determine the safe dose of SA. The expressions of COX-2 and the phosphorylation of p65 and IκBα protein in NF-κB pathway were detected by Western blot. RESULTS: We found that the pre-treatment of SA significantly reduced the degree of lung injury, and the infiltration of neutrophils in the lung interstitium and alveolar space of the lung. The formation of transparent membrane in lung tissue and thickening of alveolar septum were significantly reduced compared with the model group, and the wet-dry ratio of the lung was also reduced. ELISA and RT-qPCR results showed that SA could significantly inhibit the production of IL-6, IL-1ß, TNF-α. At the same time, SA could significantly inhibit the expression of iNOS and COX-2 proteins, and could inhibit the phosphorylation of p65 and IκBα proteins. in a dose-dependent manner. In vitro experiments, we found that flow cytometry showed that SA could significantly inhibit the polarization of macrophages from M0 type macrophages to M1-type macrophages, while SA could promote the polarization of M1-type macrophages to M2-type macrophages. The results of MTT assay showed that SA had no obvious cytotoxicity to A549 cells when the concentration was not higher than 80 µM, while LPS could promote the proliferation of A549 cells. In the study of anti-inflammatory effect, SA can significantly inhibit the expression of COX-2 and the phosphorylation of p65 and IκBα proteins in LPS-induced A549 cells. CONCLUSION: SA has possessed a crucial anti-ALI role in LPS-induced mice. The mechanism was elucidated, suggesting that the inhibition of macrophage polarization to M1-type and the promotion of macrophage polarization to M2-type, as well as the inhibition of NF-κB pathway by SA may be the reasons for its anti-ALI. This finding provides important molecular evidence for the further application of SA in the clinical treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ácido Gálico , Lipopolisacáridos , Macrófagos , Ratones Endogámicos C57BL , FN-kappa B , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Ratones , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Pulmón/efectos de los fármacos , Pulmón/patología , Células RAW 264.7 , Interleucina-1beta/metabolismo , Líquido del Lavado Bronquioalveolar , Óxido Nítrico Sintasa de Tipo II/metabolismo , Interleucina-6/metabolismo
4.
Chem Sci ; 15(20): 7714-7724, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784755

RESUMEN

Photo-thermal-synergistic hydrogenation is a promising strategy for upcycling carbon dioxide into fuels and chemicals by maximally utilizing full-spectrum solar energy. Herein, by immobilizing Pt-Rh bimetal onto a well-developed GaN NWs/Si platform, CO2 was photo-thermo-catalytically hydrogenated towards CO under concentrated light illumination without extra energies. The as-designed architecture demonstrates a considerable CO evolution rate of 11.7 mol gGaN-1 h-1 with a high selectivity of 98.5% under concentrated light illumination of 5.3 W cm-2, leading to a benchmark turnover frequency of 26 486 mol CO per mol PtRh per hour. It is nearly 2-3 orders of magnitude higher than that of pure thermal catalysis under the same temperature by external heating without light. Control experiments, various spectroscopic characterization methods, and density functional theory calculations are correlatively conducted to reveal the origin of the remarkable performance as well as the photo-thermal enhanced mechanism. It is found that the recombination of photogenerated electron-hole pairs is dramatically inhibited under high temperatures arising from the photothermal effect. More critically, the synergy between photogenerated carriers arising from ultraviolet light and photoinduced heat arising from visible- and infrared light enables a sharp reduction of the apparent activation barrier of CO2 hydrogenation from 2.09 downward to 1.18 eV. The evolution pathway of CO2 hydrogenation towards CO is also disclosed at the molecular level. Furthermore, compared to monometallic Pt, the introduction of Rh further reduces the desorption energy barrier of *CO by optimizing the electronic properties of Pt, thus enabling the achievement of excellent activity and selectivity. This work provides new insights into CO2 hydrogenation by maximally utilizing full-spectrum sunlight via photo-thermal synergy.

5.
J Colloid Interface Sci ; 665: 443-451, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537590

RESUMEN

Despite great efforts that have been made, photocatalytic carbon dioxide (CO2) reduction still faces enormous challenges due to the sluggish kinetics or disadvantageous thermodynamics. Herein, cadmium sulfide quantum dots (CdS QDs) were loaded onto carbon, oxygen-doped boron nitride (BN) and encapsulated by titanium carbide (Ti3C2, MXene) layers to construct a ternary composite. The uniform distribution of CdS QDs and the tight interfacial interaction among the three components could be achieved by adjusting the loading amounts of CdS QDs and MXene. The ternary 100MX/CQ/BN sample gave a productive rate of 2.45 and 0.44 µmol g-1 h-1 for carbon monoxide (CO) and methane (CH4), respectively. This CO yield is 1.93 and 6.13 times higher than that of CdS QDs/BN and BN counterparts. The photocatalytic durability of the ternary composite is significantly improved compared with CdS QDs/BN because MXene can protect CdS from photocorrosion. The characterization results demonstrate that the excellent CO2 adsorption and activation capabilities of BN, the visible light absorption of CdS QDs, the good conductivity of MXene and the well-matched energy band alignment jointly promote the photocatalytic performance of the ternary catalyst.

6.
Sci Bull (Beijing) ; 69(10): 1400-1409, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38402030

RESUMEN

Light-driven dry reforming of methane toward syngas presents a proper solution for alleviating climate change and for the sustainable supply of transportation fuels and chemicals. Herein, Rh/InGaN1-xOx nanowires supported by silicon wafer are explored as an ideal platform for loading Rh nanoparticles, thus assembling a new nanoarchitecture for this grand topic. In combination with the remarkable photo-thermal synergy, the O atoms in Rh/InGaN1-xOx can significantly lower the apparent activation energy of dry reforming of methane from 2.96 eV downward to 1.70 eV. The as-designed Rh/InGaN1-xOx NWs nanoarchitecture thus demonstrates a measurable syngas evolution rate of 180.9 mmol gcat-1 h-1 with a marked selectivity of 96.3% under concentrated light illumination of 6 W cm-2. What is more, a high turnover number (TON) of 4182 mol syngas per mole Rh has been realized after six reuse cycles without obvious activity degradation. The correlative 18O isotope labeling experiments, in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and in-situ diffuse reflectance Fourier transform infrared spectroscopy characterizations, as well as density functional theory calculations reveal that under light illumination, Rh/InGaN1-xOx NWs facilitate releasing *CH3 and H+ from CH4 by holes, followed by H2 evolution from H+ reduction with electrons. Subsequently, the O atoms in Rh/InGaN1-xOx can directly participate in CO generation by reacting with the *C species from CH4 dehydrogenation and contributes to the coke elimination, in concurrent formation of O vacancies. The resultant O vacancies are then replenished by CO2, showing an ideal chemical loop. This work presents a green strategy for syngas production via light-driven dry reforming of methane.

7.
Angew Chem Int Ed Engl ; 63(16): e202400011, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38409577

RESUMEN

Light-driven hydrogen production from biomass derivatives offers a path towards carbon neutrality. It is often however operated with the limitations of sluggish kinetics and severe coking. Herein, a disruptive air-promoted strategy is explored for efficient and durable light-driven hydrogen production from ethanol over a core/shell Cr2O3@GaN nanoarchitecture. The correlative computational and experimental investigations show ethanol is energetically favorable to be adsorbed on the Cr2O3@GaN interface, followed by dehydrogenation toward acetaldehyde and protons by photoexcited holes. The released protons are then consumed for H2 evolution by photogenerated electrons. Afterward, O2 can be evolved into active oxygen species and promote the deprotonation and C-C cleavage of the key C2 intermediate, thus significantly lowering the reaction energy barrier of hydrogen evolution and removing the carbon residual with inhibited overoxidation. Consequently, hydrogen is produced at a high rate of 76.9 mole H2 per gram Cr2O3@GaN per hour by only feeding ethanol, air, and light, leading to the achievement of a turnover number of 266,943,000 mole H2 per mole Cr2O3 over a long-term operation of 180 hours. Notably, an unprecedented light-to-hydrogen efficiency of 17.6 % is achieved under concentrated light illumination. The simultaneous generation of aldehyde from ethanol dehydrogenation enables the process more economically promising.

8.
Small ; 20(25): e2309906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221704

RESUMEN

On-site hydrogen production from liquid organic hydrogen carriers e.g., methanol provides an emerging strategy for the safe storage and transportation of hydrogen. Herein, a catalytic architecture consisting of nickel-cobalt nanoclusters dispersed on gallium nitride nanowires supported by silicon for light-driven hydrogen production from methanol is reported. By correlative microscopic, spectroscopic characterizations, and density functional theory calculations, it is revealed that NiCo nanoclusters work in synergy with GaN nanowires to enable the achievement of a significantly reduced activation energy of methanol dehydrogenation by switching the potential-limiting step from *CHO → *CO to *CH3O → *CH2O. In combination with the marked photothermal effect, a high hydrogen rate of 5.62 mol·gcat-1·h-1 with a prominent turnover frequency of 43,460 h-1 is achieved at 5 Wcm-2 without additional energy input. Remarkably, the synergy between Co and Ni, in combination with the unique surface of GaN, renders the architecture with outstanding resistance to sintering and coking. The architecture thereby exhibits a high turnover number of >16,310,000 over 600 h. Outdoor testing validates the viability of the architecture for active and robust hydrogen evolution under natural concentrated sunlight. Overall, this work presents a promising architecture for on-site hydrogen production from CH3OH by virtually unlimited solar energy.

9.
Curr Microbiol ; 81(1): 44, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117411

RESUMEN

A novel Gram-stain-negative, aerobic, rod-shaped bacterium named T808T was isolated from an alpine soil in Qamdo, Tibet, PR China. Strain T808T grew at 5-30℃, pH 5.0-9.0 (optimum, 25℃ and pH 7.0-8.0) with 0-2% (w/v) NaCl (optimum, 0%). The 16S rRNA gene sequences of strain T808T showed the highest similarity with Pararhizobium herbae CCBAU83011T (98.8%), followed by Pararhizobium polonicum F5.1T (98.7%), Pararhizobium giardinii H152T (98.5%), Rhizobium gei ZFJT-2 T (98.4%), and Pararhizobium antarcticum NAQVI59T (97.5%). The highest digital DNA-DNA hybridization (dDDH), core-proteome average amino acid identity (cpAAI) and average nucleotide identity (ANI) values between strain T808T and related strains were estimated as 28.0%, 92.1% and 84.4%, respectively. Phylogenetic analysis based on 16S rRNA, core-proteome and whole-genome indicated that strain T808T belonged to the genus Pararhizobium. The genome size was 6.24 Mbp with genomic DNA G + C content of 60.1%. The major cellular fatty acids were Summed feature 8 (C18:1 ω7c or C18:1 ω6c), C16:0 and C19:0 cyclo ω8c. The polar lipids were diphosphatidyl glycerol, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl choline and unidentified aminophospholipid. The isoprenoid quinone were ubiquinone-10 and ubiquinone-9. Based on phenotypic, phylogenetic, and genotypic data, strain T808T is considered to represent a novel species of the genus Pararhizobium, for which the name Pararhizobium qamdonense sp. nov. is proposed. The type strain is T808T (= JCM 36247 T = CICC 25216 T). According to phylogenetic coherence based on 16S rRNA, core-proteome and whole-genome, it is also proposed that the type strain Rhizobium gei Shi et al. 2016 should be reclassified as Pararhizobium gei comb. nov., the type strain is ZFJT-2 T (= CCTCC AB 2013015 T = KCTC 32301 T = LMG 27603 T).


Asunto(s)
ADN , Proteoma , Tibet , ARN Ribosómico 16S/genética , Filogenia , Fosfatidilgliceroles
10.
J Thorac Dis ; 15(10): 5534-5548, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37969309

RESUMEN

Background: Pulmonary cryptococcosis (PC) contributes to the ongoing global disease burden in human immunodeficiency virus (HIV)-negative populations. Since some PC patients are misdiagnosed under existing diagnostic guidelines, new diagnostic markers are needed to improve diagnostic accuracy and therapeutic efficacy and reduce disease risk. Methods: Our previously established sphingolipidomic approach was employed to explore the use of serum sphingolipids (SPLs) in diagnosing HIV-negative patients with PC. A clinical cohort of PC, pulmonary aspergillosis (PA), and tuberculosis (TB) patients and healthy controls was assessed to identify SPL biomarkers. Results: A total of 47 PC, 27 PA, and 18 TB patients and 40 controls were enrolled. PC and TB patients had similar clinical features, laboratory test results and radiological features, excluding plural effusion. The serum ceramide [Cer (d18:1/18:0)] level showed a significant increase in PC patients compared to controls and PA and TB patients (P<0.05). Cer (d18:1/18:0) was identified as a specific diagnostic biomarker for PC. The optimal cut-off value of greater than 18.00 nM showed a diagnostic sensitivity of 76.60% and a specificity of 95.00% and better distinguished PC patients from PA and TB patients. Furthermore, the serum Cer (d18:1/18:0) level gradually decreased after 3 and 6 months of treatment, suggesting the prediction potential for therapeutic efficacy of this biomarker. In addition, Cer (d18:1/18:0) analysis presented a higher sensitivity than the cryptococcal antigen (CrAg) assay. Conclusions: This is the first study to report the use of the SPL Cer (d18:1/18:0) as a serum biomarker for diagnosing Cryptococcus spp. infection in HIV-negative patients.

11.
Molecules ; 28(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687195

RESUMEN

As a vital organelle in eukaryotic cells, the Golgi apparatus is responsible for processing and transporting proteins in cells. Precisely monitoring the status of the Golgi apparatus with targeted fluorescence imaging technology is of enormous importance but remains a dramatically challenging task. In this study, we demonstrate the construction of the first Golgi apparatus-targeted near-infrared (NIR) fluorescent nanoprobe, termed Golgi-Pdots. As a starting point of our investigation, hydrophobic carbon nanodots (CNDs) with bright NIR fluorescence at 674 nm (fluorescence quantum yield: 12.18%), a narrow emission band of 23 nm, and excellent stability were easily prepared from Magnolia Denudata flowers using an ultrasonic method. Incorporating the CNDs into a polymer matrix modified with Golgi-targeting molecules allowed for the production of the water-soluble Golgi-Pdots, which showed high colloidal stability and similar optical properties compared with pristine CNDs. Further studies revealed that the Golgi-Pdots showed good biocompatibility and Golgi apparatus-targeting capability. Based on these fascinating merits, utilizing Golgi-Pdots for the long-term tracking of the Golgi apparatus inside live cells was immensely successful.


Asunto(s)
Aparato de Golgi , Carbono , Colorantes , Polímeros
12.
Chem Commun (Camb) ; 59(82): 12314-12317, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37753591

RESUMEN

Quasi-bilayered actuators composed of Fe3O4-decorated graphene oxide and polyvinylidene fluoride have been fabricated in a magnetic field. The actuators could stably respond to multiple stimuli including infrared light, acetone vapour and a magnetic field. The actuator is also patternable because of the magnetism-induced spatial distribution of fillers in the matrix.

13.
Nat Commun ; 14(1): 5115, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607911

RESUMEN

Response to immunotherapy widely varies among cancer patients and identification of parameters associating with favourable outcome is of great interest. Here we show longitudinal monitoring of peripheral blood samples of non-small cell lung cancer (NSCLC) patients undergoing anti-PD1 therapy by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines measurements. We find that higher proportions of circulating CD8+ and of CD8+CD101hiTIM3+ (CCT T) subsets significantly correlate with poor clinical response to immune therapy. Consistently, CD8+ T cells and CCT T cell frequencies remain low in most responders during the entire multi-cycle treatment regimen; and higher killer cell lectin-like receptor subfamily G, member 1 (KLRG1) expression in CCT T cells at baseline associates with prolonged progression free survival. Upon in vitro stimulation, CCT T cells of responders produce significantly higher levels of cytokines, including IL-1ß, IL-2, IL-8, IL-22 and MCP-1, than of non-responders. Overall, our results provide insights into the longitudinal immunological landscape underpinning favourable response to immune checkpoint blockade therapy in lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Citocinas , Subfamília D de Receptores Similares a Lectina de las Células NK
14.
Pharmacol Res ; 194: 106850, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453674

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the main malignant tumors with high mortality and short survival time. Immunotherapy has become the standard treatment for advanced NSCLC, but it has the problems of drug resistance and low response rate. Therefore, obtaining effective biomarkers to predict and enhance immune checkpoint inhibitors (ICIs) efficacy in NSCLC is important. Sphingolipid metabolism is recently found to be closely involved in tumor immunotherapy. CERS4, an important sphingolipid metabolizing enzyme, is positively correlated with the efficacy of anti-PD-1 therapy for NSCLC. Upregulation of CERS4 expression could improve the efficacy of anti-PD-1 therapy for NSCLC. High expression of CERS4 could downregulate the expression of Rhob in tumor. Significantly, the ratio of CD4+/CD8+ T cell increased and the ratio of Tim-3+/CD8+ T cell decreased in spleen and peripheral blood cells. When Rhob was knocked out, the efficacy of PD-1 mAb treatment increased, and the frequency of Tim-3+ CD8+ T cell decreased. This finding further confirmed the role of sphingolipid metabolites in regulating the immunotherapeutic function of NSCLC. These metabolites may improve the efficacy of PD-1 mAb in NSCLC by regulating the CERS4/Rhob/Tim-3 axis. Overall, this study provided a potential and effective target for predicting and improving the efficacy of ICIs for NSCLC. It also provided a new perspective for the study on the mechanisms of ICIs resistance for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Linfocitos T CD8-positivos , Inmunomodulación , Neoplasias Pulmonares/patología
15.
Phytomedicine ; 114: 154751, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004400

RESUMEN

BACKGROUND: Chronic diseases such as tumors and autoimmune disorders are closely linked to metabolism and immunity and require conflicting treatment methods. AMPK can regulate cell growth and inflammation through energy metabolism. Sinomenine is a compound extracted from the traditional Chinese herb sinomenium acutum (Thunb.) Rehd. et Wils. It has been used to treat NSCLC (non-small-cell lung cancer) and RA (rheumatoid arthritis) in some studies, but with limited understanding of its mechanisms. OBJECTIVE: This study aims to examine the inhibitory effect of sinomenine hydrochloride (SH) on NSCLC and RA and to understand the underlying joint mechanisms. RESULTS: The results indicate that SH has a cytotoxic effect specifically on tumor cells, but not on normal cells. SH was found to induce cell apoptosis by activating the AMPK-mTOR pathway. Additionally, in autoimmune disease cell models, SH was shown to reduce the growth of RA-FLS cells by inhibiting the phosphorylation of AMPK, while having no effect on normal macrophages. Moreover, in vivo studies also showed that SH could reduce the production of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 and slow the development of adjuvant arthritis in rats. Furthermore, SH was found to significantly suppress tumor growth in a tumor xenograft experiment in mice. CONCLUSIONS: This study provides new insights into the treatment of tumors and autoimmune diseases by demonstrating that SH can selectively inhibit the growth of NSCLC cells and the progression of RA through activation of the AMPK pathway.


Asunto(s)
Antineoplásicos , Artritis Reumatoide , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratas , Ratones , Animales , Proteínas Quinasas Activadas por AMP , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Antineoplásicos/uso terapéutico
16.
Curr Microbiol ; 80(1): 51, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36547704

RESUMEN

A Gram-stain-negative, light yellow, aerobic, non-motile, short rod-shaped bacterium named strain Y-23T with iprodione-degrading capability was isolated from a soil under a greenhouse in Tibet, PR China. Strain Y-23T grew at 4-37 â„ƒ and pH 5.0-9.0 (optimum, 25 â„ƒ and pH 7.0) with 0-3% (w/v) NaCl (optimum, 0%). Phylogenetic analysis based on 16S rRNA gene and chromosome genome indicated that strain Y-23T formed a stable evolutionary branch with Acinetobacter tandoii DSM 14970T. The 16S rRNA gene similarity, digital DNA-DNA hybridization and average nucleotide identity values between strain Y-23T and Acinetobacter tandoii DSM 14970T were 98.31%, 43.2% and 91.2%, respectively. The genome size was 3.39 Mbp with a genomic DNA G+C content of 40.59 mol%. The predominant fatty acids were C18:1 ω9c, Summed feature 3 (C16:1 ω7c/C16:1 ω6c), C12:0, C12:0 3-OH and C16:0. The polar lipids were diphosphatidyl glycerol, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl choline, unidentified phospholipid, four unidentified aminophospholipids and two unidentified lipids. The isoprenoid quinone was Q-8 (19.43%) and Q-9 (80.57%). Based on phenotypic, phylogenetic, and genotypic data, strain Y-23T is considered to represent a novel species of the genus Acinetobacter, for which the name Acinetobacter tibetensis sp. nov. is proposed. The type strain is Y-23T (= CICC 25150T = JCM 35630T).


Asunto(s)
Acinetobacter , Suelo , Tibet , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Fosfolípidos/química , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética
17.
Medicine (Baltimore) ; 101(41): e31027, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36254028

RESUMEN

Pleural effusion (PE) is a common manifestation of tuberculosis (TB) and malignant tumors but tuberculous PE (TPE) is difficult to distinguish from malignant PE (MPE), especially by noninvasive detection indicators. This study aimed to find effective detection indices in blood and PE for differentiating TB from a malignant tumor. A total of 815 patients who were diagnosed with TB or cancer in Hubei Shiyan Taihe Hospital from 2014 to 2017 were collected. Amongst them, 717 were found to have PE by thoracoscopy. Clinical characteristics, patients' blood parameters and PE indicator information were summarized for analysis. Patients with MPE had higher percentages to be bloody and negative of Rivalta test in PE than those with TPE. For clinical indicators, comparison of the specific parameters in blood showed that 18 indicators were higher in the TPE group than in the MPE group. By contrast, 12 indicators were higher in the MPE group than in the TPE group (P < .01). In addition, in PE tests, 3 parameters were higher in the TPE group, whereas other 4 parameters were higher in the MPE group (P < .01). Then, for clinical diagnosing practice, ROC analysis and principal component analysis were applied. The top 6 relevant indicators with area under curve over 0.70 were screened out as follows: hydrothorax adenosine dehydrogenase (pADA, 0.90), hydrothorax high-sensitivity C reactive protein (0.79), percentage of blood monocyte (sMONp, 0.75), blood high-sensitivity C reactive protein (sHsCRP, 0.73), erythrocyte sedimentation rate (0.71) and blood D-dimer (0.70). Moreover, logistic regression model revealed that a specific combination of 3 biomarkers, namely, pADA, sMONp and sHsCRP, could enhance the distinguishment of TB from malignant tumor with PE (area under curve = 0.944, 95% confidence interval = 0.925-0.964). The diagnostic function of the top single marker pADA in patients from different groups was analyzed and it was found to maintain high specificity and sensitivity. The 6 indicators, namely, pADA, hydrothorax high-sensitivity C reactive protein, sMONp, sHsCRP, sESR and blood D-dimer, showed significant diagnostic value for clinicians. Further, the combination of pADA, sMONp and sHsCRP has high accuracy for differential diagnosis for the first time. Most interestingly, the single marker pADA maintained high specificity and sensitivity in patients with different statuses and thus has great value for rapid and accurate diagnosis of suspected cases.


Asunto(s)
Hidrotórax , Derrame Pleural Maligno , Derrame Pleural , Tuberculosis Pleural , Tuberculosis , Adenosina , Biomarcadores , Biomarcadores de Tumor , Proteína C-Reactiva , Humanos , Oxidorreductasas , Derrame Pleural/diagnóstico , Derrame Pleural/etiología , Derrame Pleural/metabolismo , Derrame Pleural Maligno/metabolismo , Sensibilidad y Especificidad , Tuberculosis/diagnóstico , Tuberculosis Pleural/diagnóstico
18.
Front Chem ; 10: 999607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186604

RESUMEN

Biodiesel is considered a potential substitute for fossil diesel because of its unique environmentally friendly and renewable advantages. The efficient and durable heterogeneous catalysts are vital to greenly and efficiently drive the biodiesel production process. The ionic liquid-functionalized materials, possessing the characteristics of both homogeneous and heterogeneous catalysts, are one of the promising substitutions for conventional homogeneous acid/base catalysts for producing biodiesel. This mini-review focuses on recent advances in supported acid/base ionic liquids to synthesize ionic liquid-functionalized materials for producing biodiesel. The methods of immobilizing ionic liquids on supports were summarized. The merits and demerits of various supports were discussed. The catalytic activities of the ionic liquid-functionalized materials for biodiesel production were reviewed. Finally, we proposed the challenges and future development direction in this area.

19.
Org Lett ; 24(37): 6789-6793, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36094854

RESUMEN

Epicoccanes A-D (1-4) are four novel metabolites of an endophytic fungus Epicoccum nigrum. Their distinct unprecedented structures are hypothesized as oxidative dimers of pyrogallol analogues. Compounds 1 and 2 possess a novel spirobicyclo[3.2.1]octane-6,1'-cyclopentane or -cyclohexane core skeleton. Compound 3 is of a unique cage-like pentacyclic system, which unusually contained three continuous spiro-carbons. Compound 4 is a highly rearranged dimer with five contiguous chiral centers. The absolute structures of 1 and 2 were deduced by electronic circular dichroism (ECD) calculations, and those of 3 and 4 were determined by X-ray crystallography. Compounds 1 and 4 showed potential antiliver fibrosis activity.


Asunto(s)
Ascomicetos , Pirogalol , Ascomicetos/química , Ciclohexanos , Ciclopentanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Octanos , Estrés Oxidativo
20.
Front Oncol ; 12: 941643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965565

RESUMEN

Biologically active sphingolipids are closely related to the growth, differentiation, aging, and apoptosis of cancer cells. Some sphingolipids, such as ceramides, are favorable metabolites in the sphingolipid metabolic pathway, usually mediating antiproliferative responses, through inhibiting cancer cell growth and migration, as well as inducing autophagy and apoptosis. However, other sphingolipids, such as S1P, play the opposite role, which induces cancer cell transformation, migration and growth and promotes drug resistance. There are also other sphingolipids, as well as enzymes, played potentially critical roles in cancer physiology and therapeutics. This review aimed to explore the important roles of sphingolipid metabolism in cancer. In this article, we summarized the role and value of sphingolipid metabolism in cancer, including the distribution of sphingolipids, the functions, and their relevance to cancer diagnosis and prognosis. We also summarized the known and potential antitumor targets present in sphingolipid metabolism, analyzed the correlation between sphingolipid metabolism and tumor immunity, and summarize the antitumor effects of natural compounds based on sphingolipids. Through the analysis and summary of sphingolipid antitumor therapeutic targets and immune correlation, we aim to provide ideas for the development of new antitumor drugs, exploration of new therapeutic means for tumors, and study of immunotherapy resistance mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...