Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1045, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316778

RESUMEN

G-quadruplexes (G4s) can recruit transcription factors to activate gene expression, but detailed mechanisms remain enigmatic. Here, we demonstrate that G4s in the CCND1 promoter propel the motility in MAZ phase-separated condensates and subsequently activate CCND1 transcription. Zinc finger (ZF) 2 of MAZ is a responsible for G4 binding, while ZF3-5, but not a highly disordered region, is critical for MAZ condensation. MAZ nuclear puncta overlaps with signals of G4s and various coactivators including BRD4, MED1, CDK9 and active RNA polymerase II, as well as gene activation histone markers. MAZ mutants lacking either G4 binding or phase separation ability did not form nuclear puncta, and showed deficiencies in promoting hepatocellular carcinoma cell proliferation and xenograft tumor formation. Overall, we unveiled that G4s recruit MAZ to the CCND1 promoter and facilitate the motility in MAZ condensates that compartmentalize coactivators to activate CCND1 expression and subsequently exacerbate hepatocarcinogenesis.


Asunto(s)
Ciclina D1 , Proteínas de Unión al ADN , G-Cuádruplex , Factores de Transcripción , Humanos , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
2.
Cell Death Dis ; 15(1): 66, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238307

RESUMEN

Gasdermin-E (GSDME), the executioner of pyroptosis when cleaved by caspase 3, plays a crucial role in tumor defense and the response to chemotherapy drugs in cells. So far, there are poorly known mechanisms for the expression regulation of GSDME during cell death. Here, we identify the transcription factor Sp1 (Specificity protein 1) as a positive regulator of GSDME-mediated pyroptosis. Sp1 directly interacts with the GSDME promoter at -36 ~ -28 site and promotes GSDME gene transcription. Further, Sp1 knockdown or inhibition suppresses GSDME expression, thus reducing chemotherapy drugs (topotecan, etoposide, doxorubicin, sorafinib and cisplatin) induced cell pyroptosis. The regulation process synergizes with STAT3 (Signal transducer and activator of transcription 3) activity and antagonizes with DNA methylation but barely affects GSDMD-mediated pyroptosis or TNF-induced necroptosis. Our current finding reveals a new regulating mechanism of GSDME expression, which may be a viable target for the intervention of GSDME-dependent inflammatory diseases and cancer therapy.


Asunto(s)
Piroptosis , Receptores de Estrógenos , Receptores de Estrógenos/metabolismo , Muerte Celular , Cisplatino/farmacología , Doxorrubicina/farmacología , Caspasa 3/metabolismo
3.
Cell Res ; 33(11): 851-866, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580406

RESUMEN

Ultra-stable fibrous structure is a hallmark of amyloids. In contrast to canonical disease-related amyloids, emerging research indicates that a significant number of cellular amyloids, termed 'functional amyloids', contribute to signal transduction as temporal signaling hubs in humans. However, it is unclear how these functional amyloids are effectively disassembled to terminate signal transduction. RHIM motif-containing amyloids, the largest functional amyloid family discovered thus far, play an important role in mediating necroptosis signal transduction in mammalian cells. Here, we identify heat shock protein family A member 8 (HSPA8) as a new type of enzyme - which we name as 'amyloidase' - that directly disassembles RHIM-amyloids to inhibit necroptosis signaling in cells and mice. Different from its role in chaperone-mediated autophagy where it selects substrates containing a KFERQ-like motif, HSPA8 specifically recognizes RHIM-containing proteins through a hydrophobic hexapeptide motif N(X1)φ(X3). The SBD domain of HSPA8 interacts with RHIM-containing proteins, preventing proximate RHIM monomers from stacking into functional fibrils; furthermore, with the NBD domain supplying energy via ATP hydrolysis, HSPA8 breaks down pre-formed RHIM-amyloids into non-functional monomers. Notably, HSPA8's amyloidase activity in disassembling functional RHIM-amyloids does not require its co-chaperone system. Using this amyloidase activity, HSPA8 reverses the initiator RHIM-amyloids (formed by RIP1, ZBP1, and TRIF) to prevent necroptosis initiation, and reverses RIP3-amyloid to prevent necroptosis execution, thus eliminating multi-level RHIM-amyloids to effectively prevent spontaneous necroptosis activation. The discovery that HSPA8 acts as an amyloidase dismantling functional amyloids provides a fundamental understanding of the reversibility nature of functional amyloids, a property distinguishing them from disease-related amyloids that are unbreakable in vivo.


Asunto(s)
Amiloide , Necroptosis , Animales , Humanos , Ratones , Proteínas del Choque Térmico HSC70/metabolismo , Mamíferos , Unión Proteica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal
4.
J Inflamm Res ; 15: 2731-2743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509325

RESUMEN

Background: Glioblastoma (GBM) is the most common and aggressive brain tumor in adults, in which chemokines are often upregulated and may play pivotal roles in their development and progression. Chemokines are a large subfamily of cytokines with leukocyte chemotactic activities involved in various tumor progression. However, gene expression patterns of the chemokines on a global scale were not known in GBM. Methods: Differentially expressed chemokine genes in glioma and normal samples were screened by using The Cancer Genome Atlas (TCGA) database. Cox regression identified the prognosis-related genes in each glioma subtype. The protein expression levels of chemokines in 72 glioma tissues were detected by ELISA. Results: We found that the transcripts of seven chemokines, including CCL2, CCL8, CCL18, CCL28, CXCL1, CXCL5, and CXCL13, were highly expressed in GBM that evidenced by involving immune cell infiltration regulation and accompanied with worse outcomes of GBM patients. The prognostic nomogram construction demonstrated that CCL18 held the highest risk score in patients with GBM. Furthermore, experiments on 72 glioma tissue samples confirmed that CCL18 protein expression was positively associated with tumor grade and IDH1 status but inversely with glioma patients' overall survival (OS). Conclusion: Our study reveals comprehensive and comparable roles of chemokine members in glioblastoma, and identified CCL18 as a critical driver of GBM malignant behaviors, therefore providing a potential target for developing prognosis and therapy in human glioblastoma.

5.
Cell Death Differ ; 28(10): 2888-2899, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33953350

RESUMEN

Receptor interacting protein kinase 3 (RIP3 or RIPK3), the critical executor of cell programmed necrosis, plays essential roles in maintaining immune responses and appropriate tissue homeostasis. Although the E3 ligases CHIP and PELI1 are reported to promote RIP3 degradation, however, how post-translational modification regulates RIP3 activity and stability is poorly understood. Here, we identify the tripartite motif protein TRIM25 as a negative regulator of RIP3-dependent necrosis. TRIM25 directly interacts with RIP3 through its SPRY domain and mediates the K48-linked polyubiquitination of RIP3 on residue K501. The RING domain of TRIM25 facilitates the polyubiquitination chain on RIP3, thereby promoting proteasomal degradation of RIP3. Also, TRIM25 deficiency inhibited the ubiquitination of RIP3, thus promoting TNF-induced cell necrosis. Our current finding reveals the regulating mechanism of polyubiquitination on RIP3, which might be a potential therapeutic target for the intervention of RIP3-dependent necrosis-related diseases.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Necrosis , Transducción de Señal , Transfección , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA