RESUMEN
Cucumber (Cucumis sativus) fruit spines are a classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. CsTs, a C-type lectin receptor-like kinase gene, reportedly causes a tender trichome phenotype in cucumber when it mutates. In this study, the role of CsTs in cucumber fruit spines morphogenesis was confirmed using gene editing technology. Sectioning and cell wall component detection were used to analyse the main reason of tender fruit spines in the ts mutant. Subsequently, transcriptome data and a series of molecular biology experiments were used to further investigate the relationship between CsTs and cytoskeletal homeostasis in cucumber. CsTs overexpression partially compensated for the abnormal trichome phenotype of an Arabidopsis homolog mutant. Genetic hybridization and metabolic analysis indicated that CsTs and CsMict can affect trichome development and cuticle biosynthesis in the same pathway. Our findings provide important background information for further researching on the molecular mechanism underlying cucumber trichome development and contribute to understanding the biological function of C-type lectin receptor-like kinases.
RESUMEN
Powdery mildew (PM) is one of the most serious fungal diseases affecting cucumbers (Cucumis sativus L.). The mechanism of PM resistance in cucumber is intricate and remains fragmentary as it is controlled by several genes. In this study, we detected the major-effect Quantitative Trait Locus (QTL), PM5.2, involved in PM resistance by QTL mapping. Through fine mapping, the dominant PM resistance gene, CsPM5.2, was cloned and its function was confirmed by transgenic complementation and natural variation identification. In cultivar 9930, a dysfunctional CsPM5.2 mutant resulted from a single nucleotide polymorphism in the coding region and endowed susceptibility to PM. CsPM5.2 encodes a phosphate transporter-like protein PHO1; H3. The expression of CsPM5.2 is ubiquitous and induced by the PM pathogen. In cucumber, both CsPM5.2 and Cspm5.1 (Csmlo1) are required for PM resistance. Transcriptome analysis suggested that the salicylic acid (SA) pathway may play an important role in CsPM5.2-mediated PM resistance. Our findings help parse the mechanisms of PM resistance and provide strategies for breeding PM-resistant cucumber cultivars.
Asunto(s)
Ascomicetos , Cucumis sativus , Cucumis sativus/genética , Fosfatos , Ascomicetos/genética , Fitomejoramiento , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiologíaRESUMEN
KEY MESSAGE: The short fruit length phenotype in sf4 is caused by a SNP in Csa1G665390, which encodes an O-linked N-acetylglucosamine (GlcNAc) transferase in cucumber. Cucumber fruit is an excellent resource for studying fruit morphology due to its fast growth rate and naturally abundant morphological variations. The regulatory mechanisms underlying plant organ size and shape are important and fundamental biological questions. In this study, a short-fruit length mutant, sf4, was identified from an ethyl methanesulfonate (EMS) mutagenesis population derived from the North China-type cucumber inbred line WD1. Genetic analysis indicated that the short fruit length phenotype of sf4 was controlled by a recessive nuclear gene. The SF4 locus was located in a 116.7-kb genomic region between the SNP markers GCSNP75 and GCSNP82 on chromosome 1. Genomic and cDNA sequences analysis indicated that a single G to A transition at the last nucleotide of Csa1G665390 intron 21 in sf4 changed the splice site from GT-AG to GT-AA, resulting in a 42-bp deletion in exon 22. Csa1G665390 is presumed to be a candidate gene, CsSF4 that encodes an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT). CsSF4 was highly expressed in the leaves and male flowers of wild-type cucumbers. Transcriptome analysis indicated that sf4 had alterations in expression of many genes involved in hormone response pathways, cell cycle regulation, DNA replication, and cell division, suggesting that cell proliferation-associated gene networks regulate fruit development in cucumber. Identification of CsSF4 will contribute to elucidating the function of OGT in cell proliferation and to understanding fruit elongation mechanisms in cucumber.
Asunto(s)
Cucumis sativus , Mapeo Cromosómico , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Frutas , Acetilglucosamina/metabolismo , Genes de Plantas , Fenotipo , Péptidos , Uridina Difosfato/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
The spines of cucumber fruit not only have important commercial value but are also a classical tissue to study cell division and differentiation modes of multicellular trichomes. It has been reported that CsTs (C-type Lectin receptor-like kinase) can influence the development of fruit spines. In this study, we took a pair of cucumber materials defined as hard (Ts, wild type) and tender spines (ts, mutant) and defined the developmental process of fruit spines as consisting of four stages (stage I to stage IV) by continuously observing by microscope and SEM. Comparisons of transcriptome profiles at different development stages of wild-type spines showed that 803 and 722 genes were upregulated in the stalk (stage II and stage III) and base (stage IV) development stages of fruit spines, respectively. The function analysis of DEGs showed that genes related to auxin polar transport and HD-ZIP transcription factor are significantly upregulated during the development of the stalk. bHLH transcription factors and cytoskeleton-related genes were significantly upregulated during the development of the base. In addition, stage III is the key point for the difference between wild-type and mutant spines. We detected 628 DEGs between wild type and mutant at stage III. These DEGs are mainly involved in the calcium signaling of the cytoskeleton and auxin polar transport. Coincidentally, we found that CsVTI11, a factor involved in auxin signal transmission, can interact with CsTs in vivo, but this interaction does not occur between CsVTI11 and Csts, further suggesting that CsTs may regulate the development of fruit spines by influencing cell polarity. These results provide useful tools to study the molecular networks associated with cucumber fruit spine development and elucidate the biological pathways that C-type Lectin receptor-like kinase plays in regulating the development of fruit spines.
RESUMEN
A lot of researches have been focused on the evolution and function of MYB transcription factors (TFs). For revealing the formation of petunia flower color diversity, MYB gene family in petunia was identified and analyzed. In this study, a total of 155 MYB genes, including 40 1R-MYBs, 106 R2R3-MYBs, 7 R1R2R3-MYBs and 2 4R-MYBs, have been identified in the Petunia axillaris genome. Most R2R3 genes contain three exons and two introns, whereas the number of PaMYB introns varies from 0 to 12. The R2R3-MYB members could be divided into 28 subgroups. Analysis of gene structure and protein motifs revealed that members within the same subgroup presented similar exon/intron and motif organization, further supporting the results of phylogenetic analysis. Genes in subgroup 10, 11 and 21 were mainly expressed in petal, not in vegetative tissues. Genes in subgroup 9, 19, 25 and 27 expressed in all tissues, but the expression patterns of each gene were different. According to the promoter analysis, five R2R3-MYB and two MYB-related genes contained MBSI cis-element, which was involved in flavonoid biosynthetic regulation. PaMYB100/DPL has been reported to positively regulate to pigmentation. However, although PaMYB82, PaMYB68 and Pa1RMYB36 contained MBSI cis-element, their function in flavonoid biosynthesis has not been revealed. Consistent with existing knowledge, PaMYBs in subgroup 11 had similar function to AtMYBs in subgroup 6, genes in which played an important role in anthocyanin biosynthesis. In addition, PaMYB1 and PaMYB40 belonged to P9 (S7) and were potentially involved in regulation of flavonoid synthesis in petunia vegetative organs. This work provides a comprehensive understanding of the MYB gene family in petunia and lays a significant foundation for future studies on the function and evolution of MYB genes in petunia.
Asunto(s)
Antocianinas/biosíntesis , Genes myb/genética , Petunia/genética , Factores de Transcripción/genética , Antocianinas/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Familia de Multigenes/genética , Filogenia , Pigmentación/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Factores de Transcripción/clasificación , Factores de Transcripción/aislamiento & purificaciónRESUMEN
Plants monitor environmental cues to balance their vegetative and productive growth by optimizing their inflorescence architecture. TERMINAL FLOWER 1 (TFL1) and its orthologs regulate the inflorescence structure in cucumber, yet the mechanisms underlying their responses to environmental factors and the formation of terminal flowers remain elusive. Here, we performed map-based cloning to identify the gene that controls a season-dependent determinate growth phenotype and found that it was caused by the complete deletion of CsTFL1 in the genome of cucumber line WI1983Hde. In the CsTFL1 deletion plants (CsTFL1del ), determinate growth could be partially rescued by high-temperature and long-day conditions. The expressions of CsTFL1 and its ortholog CsTFL1d could be upregulated by long-day and high-temperature signals. Knockdown of CsTFL1d resulted in determinate growth and the formation of terminal flowers in WT. These results indicate that the induction of CsTFL1d expression by long-day and high-temperature might partially rescue determinate growth of CsTFL1del . Furthermore, biochemical analyses showed that CsTFL1d interacts directly with CsNOT2a, which indicated that CsTFL1d and CsTFL1 function via similar regulatory mechanism. Our data suggest that CsTFL1 and CsTFL1d co-contribute to inhibit determinate growth by responding to temperature and photoperiod signals. It provides mechanistic insights into how environmental cues sculpt the inflorescence architecture of cucumber.
Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Flores/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Cucumis sativus/fisiología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Fotoperiodo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal , TemperaturaRESUMEN
BACKGROUND: Trichomes are excellent model systems for the analysis of cell differentiation and play essential roles in plant protection. From cucumber inbred line 'WD1', we identified an EMS-induced trichome abnormally developing mutant, nps, which exhibited smaller, denser and no pyramid-shaped head trichomes. RESULTS: Using F2 and BC1 populations constructed from a cross between nps and '9930', the genetic analysis showed that the nps trait is controlled by a single recessive nuclear gene. We identified CsNps by map-based cloning with 576 individuals of the F2 population generated from the cross of nps and inbred line '9930'. The CsNps was located at a 13.4-kb genomic region on chromosome 3, which region contains three predicted genes. Sequence analysis showed that only one single nucleotide mutation (C â T) between 9930 and nps was found in the second exon of Csa3G748220, a plant-specific class I HD-Zip gene. The result of allelism test also indicated that nps is a novel allelic mutant of Mict (Micro-trichome). Thus, nps was renamed mict-L130F. By comparing the transcriptome of mict-L130F vs WD1 and 06-2 (mict) vs 06-1 (wildtype, near-isogenic line of 06-2), several potential target genes that may be related to trichome development were identified. CONCLUSIONS: Our results demonstrate that Mict-L130F is involved in the morphogenesis of trichomes. Map-based cloning of the Mict-L130F gene could promote the study of trichome development in cucumber.
Asunto(s)
Cucumis sativus/genética , Genes de Plantas , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Tricomas/anatomía & histología , Cucumis sativus/anatomía & histología , Genes Recesivos , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Tricomas/genéticaRESUMEN
Sex determination is a crucially important developmental event that is pervasive throughout nature and enhances the adaptation of species. Among plants, cucumber (Cucumis sativus L.) can generate both unisexual and bisexual flowers, and the sex type is mainly controlled by several 1-aminocyclopropane-1-carboxylic acid synthases (CsACSs). However, the regulatory mechanism of these synthases remains elusive. Here, we used gene expression analysis, protein-DNA interaction assays, and transgenic plants to study the function of a gynoecium-specific gene, ETHYLENE RESPONSE FACTOR31 (CsERF31), in female flower differentiation. We found that in a predetermined female flower, ethylene signaling activates CsERF31 by CsEIN3, and then CsERF31 stimulates CsACS2, which triggers a positive feedback loop to ensure female rather than bisexual flower development. A similar interplay is functionally conserved in melon (Cucumis melo L.). Knockdown of CsERF31 by RNAi causes defective bisexual flowers to replace female flowers. Ectopic expression of CsERF31 suppresses stamen development and promotes pistil development in male flowers, demonstrating that CsERF31 functions as a sex switch. Taken together, our data confirm that CsERF31 represents the molecular link between female-male determination and female-bisexual determination, and provide mechanistic insight into how ethylene promotes female flowers, rather than bisexual flowers, in cucumber sex determination.
RESUMEN
Sex determination is a crucially important developmental event that is pervasive throughout nature and enhances the adaptation of species. Among plants, cucumber (Cucumis sativus L.) can generate both unisexual and bisexual flowers, and the sex type is mainly controlled by several 1-aminocyclopropane-1-carboxylic acid (ACC) synthases. However, the regulatory mechanism of these synthases remains elusive. Here, we used gene expression analysis, protein-DNA interaction assays and transgenic plants to study the function of a gynoecium-specific gene, ETHYLENE RESPONSE FACTOR31 (CsERF31), in female flower differentiation. We found that in a predetermined female flower, ethylene signalling activates CsERF31 by CsEIN3, and then CsERF31 stimulates CsACS2, which triggers a positive feedback loop to ensure female rather than bisexual flower development. A similar interplay is functionally conserved in melon (Cucumis melo L.). Knockdown of CsERF31 by RNAi causes defective bisexual flowers to replace female flowers. Ectopic expression of CsERF31 suppresses stamen development and promotes pistil development in male flowers, demonstrating that CsERF31 functions as a sex switch. Taken together, our data confirm that CsERF31 represents the molecular link between female-male determination and female-bisexual determination, and provide mechanistic insight into how ethylene promotes female flowers, rather than bisexual flowers, in cucumber sex determination.
RESUMEN
KEY MESSAGE: An unusual flower and tendril (uft) mutant in cucumber was caused by a mutation in Csa1G056950 encoding an F-box protein. Flowers and tendrils are important agronomic and yield traits of cucumber (Cucumis sativus L.). In this study, we identified an unusual flower and tendril (uft) mutant from an ethyl methanesulfonate (EMS) mutagenesis population. Genetic analysis revealed that the phenotype of the uft mutant was regulated by a single recessive nuclear gene. Map-based cloning and MutMap+ results demonstrated that Csa1G056950 (CsUFO), encoding an F-box protein, was the causal gene for the uft mutant phenotype of cucumber. A single nucleotide polymorphism (SNP) mutation (C to T) in the second exon of CsUFO resulted in premature translation termination. The expression level of CsUFO was significantly decreased in apical buds of the uft mutant compared with the wild-type (WT) WD1. Transcriptome analysis indicated that many genes for organ development were down-regulated in uft plants, suggesting CsUFO-associated networks that regulate flower and tendril development. These findings provide a new insight into understanding the molecular mechanisms of flower organogenesis in cucumber.
Asunto(s)
Cucumis sativus/genética , Proteínas F-Box/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Mapeo Cromosómico , Codón sin Sentido , Flores/genética , Perfilación de la Expresión Génica , Genes de Plantas , Genes Recesivos , Ligamiento Genético , Fenotipo , Polimorfismo de Nucleótido SimpleRESUMEN
Trichomes that cover the epidermis of aerial plant organs play multiple roles in plant protection. Compared with a unicellular trichome in model plants, the development mechanism of the multicellular trichome is largely unclear. Notably, variations in trichome development are often accompanied by defects in the biosynthesis of cuticle and secondary metabolites; however, major questions about the interactions between developmental differences in trichomes and defects in metabolic pathways remain unanswered. Here, we characterized the glabrous mutant mict/csgl1/cstbh via combined metabolomic and transcriptomic analyses to extend our limited knowledge regarding multicellular trichome development and metabolism in cucumber. Mict was found to be explicitly expressed within trichome cells. Transcriptomic analysis indicated that genes involved in flavonoid and cuticle metabolism are significantly downregulated in mict mutants. Further metabolomic analysis confirmed that flavonoids, lipids, and cuticle compositions are dramatically altered in mict mutants. Additional studies revealed that Mict regulates flavonoid, lipid, and cuticle biosynthesis by likely directly binding to downstream functional genes, such as CsTT4, CsFLS1, CsCER26, and CsMYB36. These findings suggest that specific metabolic pathways (e.g., flavonoids and cuticle components) are co-regulated by Mict and provide insights into transcriptional regulation mechanisms of multicellular trichome development and its specific metabolism in cucumber.
RESUMEN
KEY MESSAGE: CsSh5.1, which controls hypocotyl elongation under high temperature conditions in cucumber, was mapped to a 57.1 kb region on chromosome 5 containing a candidate gene encoding a xyloglucan galactosyltransferase. Hypocotyl growth is a vital process in seedling establishment. Hypocotyl elongation after germination relies more on longitudinal cell elongation than cell division. Cell elongation is largely determined by the extensibility of the cell wall. Here, we identified a spontaneous mutant in cucumber (Cucumis sativus L.), sh5.1, which exhibits a temperature-insensitive short hypocotyl phenotype. Genetic analysis showed that the phenotype of sh5.1 was controlled by a recessive nuclear gene. CsSh5.1 was mapped to a 57.1 kb interval on chromosome 5, containing eight predicted genes. Sequencing analysis revealed that the Csa5G171710 is the candidate gene of CsSh5.1, which was further confirmed via co-segregation analysis and genomic DNA sequencing in natural cucumber variations. The result indicated that hypocotyl elongation might be controlled by this gene. CsSh5.1 encodes a xyloglucan galactosyltransferase that specifically adds galactose to xyloglucan and forms galactosylated xyloglucans, which determine the strength and extensibility of the cell walls. CsSh5.1 expression in wild-type (WT) hypocotyl was significantly higher than that in sh5.1 hypocotyl under high temperature, suggesting its important role in hypocotyl cell elongation under high temperature. The identification of CsSh5.1 is helpful for elucidating the function of xyloglucan galactosyltransferase in cell wall expansion and understanding the mechanism of hypocotyl elongation in cucumber.
Asunto(s)
Mapeo Cromosómico/métodos , Cucumis sativus/crecimiento & desarrollo , Galactosiltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Hipocótilo/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Cromosomas de las Plantas/genética , Cucumis sativus/enzimología , Cucumis sativus/genética , Galactosiltransferasas/genética , Perfilación de la Expresión Génica , Hipocótilo/enzimología , Hipocótilo/genética , Proteínas de Plantas/genéticaRESUMEN
TCP proteins are plant-specific transcription factors widely implicated in leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, the relationship between the transcription pattern of TCPs and organ development in cucumber has not been systematically studied. In this study, we performed a genome-wide identification of putative TCP genes and analyzed their chromosomal location, gene structure, conserved motif, and transcript expression. A total of 27 putative TCP genes were identified and characterized in cucumber. All 27 putative CsTCP genes were classified into class I and class II. Class I comprised 12 CsTCPs and Class II contained 15 CsTCPs. The 27 putative CsTCP genes were randomly distributed in five of seven chromosomes in cucumber. Four putative CsTCP genes were found to contain putative miR319 target sites. Quantitative RT-PCR revealed that 27 putative CsTCP genes exhibited different expression patterns in cucumber tissues and floral organ development. Transcript expression and phenotype analysis showed that the putative CsTCP genes responded to temperature and photoperiod and were induced by gibberellin (GA)and ethylene treatment, which suggested that CsTCP genes may regulate the lateral branching by involving in multiple signal pathways. These results lay the foundation for studying the function of cucumber TCP genes in the future.
Asunto(s)
Cucumis sativus/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Arabidopsis/genética , Mapeo Cromosómico , Cucumis sativus/efectos de los fármacos , Cucurbitaceae/genética , Etilenos/farmacología , Flores/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Estudio de Asociación del Genoma Completo , Giberelinas/farmacología , Familia de Multigenes , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber (Cucumis sativus L.). In this study, 46 putative LecRLK genes were identified in the cucumber genome, including 23 G-type and 22 L-type, and one C-type LecRLK gene. They were unequally distributed on all seven chromosomes, with a clustering tendency. Most of the genes in the cucumber LecRLK (CsLecRLK) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormones and stress on these genes' promoters. Transcriptome data demonstrated distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real-time PCR (qRT-PCR) analysis. This study provides a better understanding of the character and function of the LecRLK gene family in cucumber and opens up the possibility to exploring the roles that LecRLKs might play in the life cycle of cucumber.
Asunto(s)
Cucumis sativus/genética , Lectinas/genética , Proteínas de Plantas/genética , Receptores Mitogénicos/genética , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Familia de Multigenes/genética , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Estrés Fisiológico/genética , Transcriptoma/genéticaRESUMEN
Trichomes and fruit spines are important traits that directly affect the appearance quality and commercial value of cucumber (Cucumis sativus). Tril (Trichome-less), encodes a HD-Zip IV transcription factor that plays a crucial role in the initiation of trichomes and fruit spines, but little is known about the details of the regulatory mechanisms involved. In this study, analysis of tissue expression patterns indicated that Tril is expressed and functions in the early stages of organ initiation and development. Expression of Tril under the control of its own promoter (the TrilPro::Tril-3*flag fragment) could partly rescue the mutant phenotypes of tril, csgl3 (cucumber glabrous 3, an allelic mutant of tril), and fs1 (few spines 1, a fragment substitution in the Tril promoter region), providing further evidence that Tril is responsible for the initiation of trichomes and fruit spines. In lines with dense spine, fs1-type lines, and transgenic lines of different backgrounds containing the TrilPro::Tril-3*flag foreign fragment, spine density increased in conjunction with increases in Tril expression, indicating that Tril has a gene dosage effect on fruit spine density in cucumber. Numerous Spines (NS) is a negative regulatory factor of fruit spine density. Characterization of the molecular and genetic interaction between Tril and NS/ns demonstrated that Tril functions upstream of NS with respect to spine initiation. Overall, our results reveal a novel regulatory mechanism governing the effect of Tril on fruit spine development, and provide a reference for future work on breeding for physical quality in cucumber.
Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Cucumber is one of the most important vegetables in the world. The C2H2 zinc finger protein (C2H2-ZFP) family plays an important role in the growth development and abiotic stress responses of plants. However, there have been no systematic studies on cucumber. In this study, we performed a genome-wide study of C2H2-ZFP genes and analyzed their chromosomal location, gene structure, conservation motif, and transcriptional expression. In total, 101 putative cucumber C2H2-ZFP genes were identified and divided into six groups (I-VI). RNA-seq transcriptome data on different organs revealed temporal and spatial expression specificity of the C2H2-ZFP genes. Expression analysis of sixteen selected C2H2-ZFP genes in response to cold, drought, salt, and abscisic acid (ABA) treatments by real-time quantitative polymerase chain reaction showed that C2H2-ZFP genes may be involved in different signaling pathways. These results provide valuable information for studying the function of cucumber C2H2-ZFP genes in the future.
Asunto(s)
Dedos de Zinc CYS2-HIS2/genética , Cucumis sativus/genética , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Transcriptoma , Cucumis sativus/crecimiento & desarrollo , Sequías , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/metabolismoRESUMEN
Cucumber, Cucumis sativus L. (2n = 2x = 14), is an important vegetable crop worldwide. It was the first specialty crop with a publicly available draft genome. Its relatively small, diploid genome, short life cycle, and self-compatible mating system offers advantages for genetic studies. In recent years, significant progress has been made in molecular mapping, and identification of genes and QTL responsible for key phenotypic traits, but a systematic review of the work is lacking. Here, we conducted an extensive literature review on mutants, genes and QTL that have been molecularly mapped or characterized in cucumber. We documented 81 simply inherited trait genes or major-effect QTL that have been cloned or fine mapped. For each gene, detailed information was compiled including chromosome locations, allelic variants and associated polymorphisms, predicted functions, and diagnostic markers that could be used for marker-assisted selection in cucumber breeding. We also documented 322 QTL for 42 quantitative traits, including 109 for disease resistances against seven pathogens. By alignment of these QTL on the latest version of cucumber draft genomes, consensus QTL across multiple studies were inferred, which provided insights into heritable correlations among different traits. Through collaborative efforts among public and private cucumber researchers, we identified 130 quantitative traits and developed a set of recommendations for QTL nomenclature in cucumber. This is the first attempt to systematically summarize, analyze and inventory cucumber mutants, cloned or mapped genes and QTL, which should be a useful resource for the cucurbit research community.
RESUMEN
The leaf is an important photosynthetic organ and plays an essential role in the growth and development of plants. Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis. In this study, we identified an EMS-induced mutant, yl2.1, which exhibited yellow cotyledons and true leaves that did not turn green with leaf growth. The yl2.1 locus was controlled by a recessive nuclear gene. The CsYL2.1 was mapped to a 166.7-kb genomic region on chromosome 2, which contains 24 predicted genes. Only one non-synonymous single nucleotide polymorphism (SNP) was found between yl2.1 and wt-WD1 that was located in Exon 7 of Csa2G263900, resulting in an amino acid substitution. CsYL2.1 encodes a plastid isoform of triose phosphate isomerase (pdTPI), which catalyzes the reversible conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (GAP) in chloroplasts. CsYL2.1 was highly expressed in the cotyledons and leaves. The mesophyll cells of the yl2.1 leaves contained reduced chlorophyll and abnormal chloroplasts. Correspondingly, the photosynthetic efficiency of the yl2.1 leaves was impaired. Identification of CsYL2.1 is helpful in elucidating the function of ptTPI in the chlorophyll metabolism and chloroplast development and understanding the molecular mechanism of this leaf color variant in cucumber.
Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Triosa-Fosfato Isomerasa/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Color , Cucumis sativus/enzimología , Cucumis sativus/genética , Genes Recesivos , Isoenzimas , Fenotipo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Triosa-Fosfato Isomerasa/genéticaRESUMEN
The development of trichomes (spines) on cucumber fruits is an important agronomic trait. It has been reported that two MYB family members, CsMYB6 (Csa3G824850) and CsTRY (Csa5G139610) act as negative regulators of trichome or fruit spine initiation. To further study the functions of these two genes, we overexpressed them in tobacco, and found that the flowers and seed coats of transformants overexpressing CsTRY displayed an unexpected defect in pigmentation that was not observed in plants overexpressing CsMYB6. Moreover, the expression of key genes in the flavonoid synthesis pathway was repressed in CsTRY overexpressing plants, which resulted in the decrease of several important flavonoid secondary metabolites. In addition, CsTRY could interact with the AN1 homologous gene CsAN1 (Csa7G044190) in cucumber, which further confirmed that CsTRY not only regulates the development of fruit spines, but also functions in the synthesis of flavonoids, acting as the repressor of anthocyanin synthesis.