Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(9): 3404-3415, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37350473

RESUMEN

Cloaking against electromagnetic detection is a well-researched topic; yet achieving multispectral camouflage over a wide temperature range remains challenging. Herein, an orientation-gradient co-optimized graded Gyroid-shellular (GGS) SiOC-based metastructure with a conformal MXene coating (M@SiOC) is proposed to achieve wide-temperature-range microwave/infrared/visible-light-compatible camouflage. Firstly, the combination of coordinate transformation and genetic algorithm endows the GGS architecture with optimal orientation and gradient, allowing superior microwave blackbody-like behavior. Secondly, a microwave-transparent, low-infrared-emissivity MXene metasurface is constructed in situ to permit wide-temperature-range infrared camouflage. Finally, the outstanding spectral selectivity of MXene enables camouflage against 1.06 µm-lidar and visible-light detection. As a result, the as-fabricated [110]-oriented GGS M@SiOC metamaterials exhibit outstanding wide-temperature-range multispectral camouflage: (i) ultrabroadband microwave absorption exceeding 80% in the X-Ku band from room temperature (RT) to 500 °C with absorption above 86.0% (91.4% on average) at 500 °C; (ii) excellent long-wavelength infrared camouflage for object temperatures from RT to 450 °C, reaching an infrared signal intensity of 78.5% for objects at 450 °C; and (iii) camouflage against both 1.06 µm-lidar and dark environment. Compared with traditional hierarchical metamaterials necessitating complex micro/nano-fabrication processes, this work provides a novel pathway toward the realization of structurally integrated multispectral stealth components by combining flexible metastructure design and high-fidelity additive manufacturing.

2.
Adv Sci (Weinh) ; 9(30): e2204086, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36026560

RESUMEN

Solar-thermal conversion is considered as a green and simple means to improve the performance of energy storage materials, but often limited by the intrinsic photothermal properties of materials and crude structure design. Herein, inspired by the unique light trapping effect of wide leaf spiral grass during photosynthesis, a biomimetic structural photothermal energy storage system is developed, to further promote the solar thermal-driven pseudo capacitance improvement. In this system, three-dimensional printed tortional Kelvin cell arrays structure with interesting light trapping property functions as "spiral leaf blades" to improve the efficiency of light absorption, while graphene quantum dots/MXene nanohybrids with wide photothermal response range and strong electrochemical activity serve as "chloroplast" for photothermal conversion and energy storage. As expected, the biomimetic structure-enhanced photothermal supercapacitor achieves an ideal solar thermal-driven pseudo capacitance enhancement (up to 304%), an ultrahigh areal capacitance of 10.47 F cm-2 , remarkable photothermal response (surface temperature change of 50.1 °C), excellent energy density (1.18 mWh cm-2 ) and cycling stability (10000 cycles). This work not only offers a novel enhancement strategy for photothermal applications, but also inspires new structure designs for multifunctional energy storage and conversion devices.


Asunto(s)
Grafito , Puntos Cuánticos , Puntos Cuánticos/química , Poaceae
3.
J Colloid Interface Sci ; 611: 137-148, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34942487

RESUMEN

Converting CO2 into chemical energy by using solar energy is an environmental strategy to achieve carbon neutrality. In this paper, two dimensionality (2D) SrTiO3-x nanosheets with oxygen vacancies were synthesized successfully. Oxygen vacancies will generate defect levels in the band structure of SrTiO3-x. So, SrTiO3-x nanosheets have good photocatalytic CO2 reduction performance under visible light. In order to further improve its photocatalytic efficiency, Bi was used to dope Sr site and Ti site in SrTiO3-x nanosheets respectively. It is found that Sr site is the adsorption site of CO2 molecules. When Bi replaced Sr, CO2 adsorption on the surface of SrTiO3-x nanosheets was weakened. When Bi replaced Ti, there has no effect on CO2 adsorption. Due to the synergistic effect of Bi doping, oxygen vacancies, and Sr active site, the 1.0% Bi-doped Ti site in SrTiO3-x (1.0% Bi-Ti-STO) had the best photocatalytic performance under visible light (λ ≥ 420 nm). CO and CH4 yields were 5.58 umol/g/h and 0.36 umol/g/h. Photocatalytic CO2 reduction path has always been the focus of exploration. The in-situ FTIR spectrum proved the step of photocatalytic CO2 reduction and COO- and COOH are important intermediates in the photocatalytic CO2 reaction.

4.
J Colloid Interface Sci ; 607(Pt 1): 242-252, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34500423

RESUMEN

Bismuth titanate (Bi12TiO20) with unique sillenite structure has been shown to be an excellent photocatalyst for environmental remediation. However, the narrow light-responsive range and rapid recombination of photoinduced electrons-holes limit the photocatalytic performance of Bi12TiO20. To overcome the limitations, a practical and feasibleway is to fabricate heterojunctions by combining Bi12TiO20 with suitable photocatalysts. Here, using a facile chemical precipitation method, a novel and hierarchical core-shell structure of n-Bi12TiO20@p-BiOI (BTO@BiOI) heterojunction was rationally designed and synthesized by loading BiOI nanosheets on BTO nanofibers. The constructed BTO@BiOI composites exhibited significant charge transfer ability due to the synergistic effects of the built-in electric field between BTO and BiOI as well as close interfacial contacts. In addition, the narrow bandgapcharacteristics of the BiOI led to wide light absorption ranges. Therefore, the BTO@BiOI heterojunction exhibited an improved photocatalytic performance under visible light irradiation. The NO removal efficiency of optimal BTO@BiOI was 45.7%, which was significantly higher compared tothat of pure BTO (3.6%) or BiOI (23.1%). Moreover, the cycling experiment revealed that BTO@BiOI composite has a good stability and reusability. The possible mechanism of photocatalytic NO oxidation over BTO@BiOI was investigated in detail.

5.
ACS Appl Mater Interfaces ; 13(5): 6180-6187, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33512144

RESUMEN

Metal halide perovskite with a suitable energy band structure and excellent visible-light response is a prospective photocatalyst for CO2 reduction. However, the reported inorganic halide perovskites have undesirable catalytic performances due to phase-sensitive and severe charge carrier recombination. Herein, we anchor the FAPbBr3 quantum dots (QDs) on Ti3C2 nanosheets to form a FAPbBr3/Ti3C2 composite within a Schottky heterojunction for photocatalytic CO2 reduction. Upon visible-light illumination, the FAPbBr3/Ti3C2 composite photocatalyst exhibits an appealing photocatalytic performance in the presence of deionized water. The Ti3C2 nanosheet acts as an electron acceptor to promote the rapid separation of excitons and supply specific catalytic sites. An optimal electron consumption rate of 717.18 µmol/g·h is obtained by the FAPbBr3/0.2-Ti3C2 composite, which has a 2.08-fold improvement over the pristine FAPbBr3 QDs (343.90 µmol/g·h). Meanwhile, the FAPbBr3/Ti3C2 photocatalyst also displays a superior stability during photocatalytic reaction. This work expands a new insight and platform for designing superb perovskite/MXene-based photocatalysts for CO2 reduction.

6.
Nanotechnology ; 31(25): 254002, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32050192

RESUMEN

A TiO2 with exposed (001) facets/Bi4O5Br2 nanosheets heterojunction (TNS/BOB) was fabricated via a hydrothermal and electrostatic self-assembly method. The photocatalytic activity for NO removal was evaluated under simulated solar light irradiation. Through optimizing the content of TNS nanosheets, the photo-oxidative NO removal rate of 15% TNS/BOB was increased by up to 54.3%. This value is much higher than that of the individual components TNS (31.1%) and BOB (37.7%). Through capturing experiments and electron spin resonance (ESR) measurements, the main active species in the photocatalytic process were identified as ·[Formula: see text] and ·OH. Discrete Fourier transform computation results and ESR tests revealed that the photo-induced electrons in TNS should recombine with the holes in BOB, leading to effectively promoted charge separation at the TNS/BOB interface through the Z-type charge transfer. This work showed that with appropriate facet control and heterojunction design TiO2 can be used as an effective visible-light photocatalyst material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...