Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Heliyon ; 10(12): e32727, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994078

RESUMEN

Multiple cell death pathways are involved in neuronal death in ischemic stroke (IS). However, the role of different cell death pathways in different cell types has not been elucidated. By analyzing three single-nucleus RNA sequencing (snRNA-seq) data of IS, we first found that a variety of programmed cell death (PCD) -related genes were significantly changed in different cell types. Based on machine learning and virtual gene knockout, we found that ferroptosis related genes, ferritin heavy chain 1 (Fth1) and ferritin light chain (Ftl1), play a key role in IS. Ftl1 and Fth1 can promote microglia activation, as well as the production of inflammatory factors and chemokines. Cell communication analysis showed that activated microglia could enhance chemotactic peripheral leukocyte infiltration, such as macrophages and neutrophils, through Spp1-Cd44 and App-Cd74 signaling, thereby aggravating brain tissue damage. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) showed that P2ry12 and Mef2c were significantly decreased in oxygen-glucose deprivation (OGD) group, while Ftl1, Fth1, Apoe, Ctsb, Cd44 and Cd74 were significantly increased in OGD group. Collectively, our findings suggested targeted therapy against microglia Ftl1 and Fth1 might improve the state of microglia, reduce the infiltration of peripheral immune cells and tissue inflammation, and then improve the ischemic brain injury in mouse.

2.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893518

RESUMEN

Oridonin (Ori) is a naturally existing diterpenoid substance that mainly exists in the Chinese medicinal plant Rabdosia rubescens. It was previously found to possess intriguing biological properties; however, the quick clearance from plasma and limited solubility in water restricts its use as a drug. Several metal-organic frameworks (MOFs), having big surfaces and large pores, have recently been considered promising drug transporters. The zeolitic imidazolate framework-8 (ZIF-8), a form of MOF consisting of 2-methylimidazole with zinc ions, is structurally stable under physiologically neutral conditions, while it can degrade at low pH values such as in tumor cells. Herein, a nanosized drug delivery system, Ori@ZIF-8, was successfully designed for encapsulating and transporting oridonin to the tumor site. The drug loading of the prepared Ori@ZIF-8 was 26.78%, and the particles' mean size was 240.5 nm. In vitro, the release of Ori@ZIF-8 exhibited acid sensitivity, with a slow release under neutral conditions and rapid release of the drug under weakly acidic conditions. According to the in vitro anti-tumor experiments, Ori@ZIF-8 produced higher cytotoxicity than free Ori and induced apoptosis in A549 cancer cells. In conclusion, Ori@ZIF-8 could be a potential pH-responsive carrier to accurately release more oridonins at the tumor site.


Asunto(s)
Diterpenos de Tipo Kaurano , Estructuras Metalorgánicas , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/farmacología , Estructuras Metalorgánicas/química , Humanos , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Portadores de Fármacos/química , Células A549 , Línea Celular Tumoral , Zeolitas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Imidazoles
3.
J Chem Inf Model ; 64(12): 4835-4849, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38847742

RESUMEN

The lymphocyte-specific protein tyrosine kinase (LCK) plays a crucial role in both T-cell development and activation. Dysregulation of LCK signaling has been demonstrated to drive the oncogenesis of T-cell acute lymphoblastic leukemia (T-ALL), thus providing a therapeutic target for leukemia treatment. In this study, we introduced a sophisticated virtual screening strategy combined with biological evaluations to discover potent LCK inhibitors. Our initial approach involved utilizing the PLANET algorithm to assess and contrast various scoring methodologies suitable for LCK inhibitor screening. After effectively evaluating PLANET, we progressed to devise a virtual screening workflow that synergistically combines the strengths of PLANET with the capabilities of Schrödinger's suite. This integrative strategy led to the efficient identification of four potential LCK inhibitors. Among them, compound 1232030-35-1 stood out as the most promising candidate with an IC50 of 0.43 nM. Further in vitro bioassays revealed that 1232030-35-1 exhibited robust antiproliferative effects on T-ALL cells, which was attributed to its ability to suppress the phosphorylations of key molecules in the LCK signaling pathway. More importantly, 1232030-35-1 treatment demonstrated profound in vivo antileukemia efficacy in a human T-ALL xenograft model. In addition, complementary molecular dynamics simulations provided deeper insight into the binding kinetics between 1232030-35-1 and LCK, highlighting the formation of a hydrogen bond with Met319. Collectively, our study established a robust and effective screening strategy that integrates AI-driven and conventional methodologies for the identification of LCK inhibitors, positioning 1232030-35-1 as a highly promising and novel drug-like candidate for potential applications in treating T-ALL.


Asunto(s)
Aprendizaje Profundo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/antagonistas & inhibidores , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Animales , Descubrimiento de Drogas , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones
4.
Molecules ; 29(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38792256

RESUMEN

In recent years, dibenzyl disulfide (DBDS) in transformer oils has caused many transformer failures around the world, and its removal has attracted more attention. In this work, nine imidazolium-based ionic liquids (ILs) were applied as effective, green desulfurization extractants for DBDS-containing transformer oil for the first time. The results show that the desulfurization ability of the ILs for DBDS followed the order of [BMIM]FeCl4 > [BMIM]N(CN)2 > [BMIM]SCN > [BMIM](C4H9O)2PO2 > [BMIM]MeSO4 > [BMIM]NTf2 > [BMIM]OTf > [BMIM]PF6 > [BMIM]BF4. Especially, [BMIM]FeCl4 ionic liquid had excellent removal efficiency for DBDS, with its S partition coefficient KN (S) being up to 2642, which was much higher than the other eight imidazolium-based ILs. Moreover, the extractive performance of [BMIM]FeCl4 increased with an increasing molar ratio of FeCl3 to [BMIM]Cl, which was attributed to its Lewis acidity and fluidity. [BMIM]FeCl4 ionic liquid could also avail in the desulfurization of diphenyl sulfide (DPS) from model oils. The experimental results demonstrate that π-π action, π-complexation, and Lewis acid-base interaction played important roles in the desulfurization process. Finally, the ([BMIM]FeCl4) ionic liquid could be recycled five times without a significant decrease in extractive ability.

5.
PLoS One ; 19(5): e0304300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781179

RESUMEN

BACKGROUND: Numerous observational studies have reported an association between frailty and atherosclerosis. However, the causal relationship between frailty and the occurrence of atherosclerosis in different anatomical sites remains unclear. we conducted a bidirectional Mendelian randomization (MR) study to evaluate the causal relationship between the frailty index (FI), and both systemic atherosclerosis and lipids. METHODS: We obtained summary statistics from large-scale genome-wide association studies (GWAS) of various phenotypes, including frailty (n = 175,226), coronary atherosclerosis (n = 56,685), cerebral atherosclerosis (n = 150,765), peripheral arterial disease (PAD) (n = 361,194), atherosclerosis at other sites (n = 17,832), LDL-C (n = 201,678), HDL-C (n = 77,409), and triglycerides (n = 78,700). The primary MR analysis employed the inverse variance weighted (IVW) method. Furthermore, to assess reverse causality, we employed inverse MR and multivariate MR analysis. RESULTS: Genetically predicted FI showed positive associations with the risk of coronary atherosclerosis (OR = 1.47, 95% CI 1.12-1.93) and cerebral atherosclerosis (OR = 1.99, 95% CI 1.05-3.78), with no significant association (p >0.05) applied to peripheral arterial disease and atherosclerosis at other sites. Genetically predicted FI was positively associated with the risk of triglycerides (OR = 1.31, 95% CI 1.08-1.59), negatively associated with the risk of LDL-C (OR = 0.87, 95% CI 0.78-0.97), and showed no significant association with the risk of HDL-C (p >0.05). Furthermore, both reverse MR and multivariate MR analyses demonstrated a correlation between systemic atherosclerosis, lipids, and increased FI. CONCLUSION: Our study elucidated that genetically predicted FI is associated with the risk of coronary atherosclerosis and cerebral atherosclerosis by the MR analysis method, and they have a bidirectional causal relationship. Moreover, genetically predicted FI was causally associated with triglyceride and LDL-C levels. Further understanding of this association is crucial for optimizing medical practice and care models specifically tailored to frail populations.


Asunto(s)
Aterosclerosis , Fragilidad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Aterosclerosis/genética , Fragilidad/genética , Factores de Riesgo , Triglicéridos/sangre , Polimorfismo de Nucleótido Simple , Femenino , Enfermedad de la Arteria Coronaria/genética , Masculino , LDL-Colesterol/sangre , Anciano , HDL-Colesterol/sangre
6.
Immunol Invest ; : 1-19, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809063

RESUMEN

BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS: CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS: TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION: Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.

7.
Acta Pharmacol Sin ; 45(8): 1644-1659, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38589686

RESUMEN

Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6-8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Células Madre , Animales , Exosomas/metabolismo , Exosomas/trasplante , Lesión Pulmonar Aguda/terapia , Humanos , Ratones , Células Madre/citología , Células Madre/metabolismo , Fibroblastos/metabolismo , Masculino , Ratones Endogámicos C57BL , Diferenciación Celular , Células Cultivadas , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Pulmón/patología , Modelos Animales de Enfermedad
8.
Int Immunopharmacol ; 133: 112004, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613881

RESUMEN

Silicosis is a hazardous occupational disease caused by inhalation of silica, characterized by persistent lung inflammation that leads to fibrosis and subsequent lung dysfunction. Moreover, the complex pathophysiology of silicosis, the challenges associated with early detection, and the unfavorable prognosis contribute to the limited availability of treatment options. Daphnetin (DAP), a natural lactone, has demonstrated various pharmacological properties, including anti-inflammatory, anti-fibrotic, and pulmonary protective effects. However, the effects of DAP on silicosis and its molecular mechanisms remain uncover. This study aimed to evaluate the therapeutic effects of DAP against pulmonary inflammation and fibrosis using a silica-induced silicosis mouse model, and investigate the potential mechanisms and targets through network pharmacology, proteomics, molecular docking, and cellular thermal shift assay (CETSA). Here, we found that DAP significantly alleviated silica-induced lung injury in mice with silicosis. The results of H&E staining, Masson staining, and Sirius red staining indicated that DAP effectively reduced the inflammatory response and collagen deposition over a 28-day period following lung exposure to silica. Furthermore, DAP reduced the number of TUNEL-positive cells, increased the expression levels of Bcl-2, and decreased the expression of Bax and cleaved caspase-3 in the mice with silicosis. More importantly, DAP suppressed the expression levels of NLRP3 signaling pathway-related proteins, including NLRP3, ASC, and cleaved caspase-1, thereby inhibiting silica-induced lung inflammation. Further studies demonstrated that DAP possesses the ability to inhibit the epithelial mesenchymal transition (EMT) induced by silica through the inhibition of the TGF-ß1/Smad2/3 signaling pathway. The experimental results of proteomic analysis found that the PI3K/AKT1 signaling pathway was the key targets of DAP to alleviate lung injury induced by silica. DAP significantly inhibited the activation of the PI3K/AKT1 signaling pathway induced by silica in lung tissues. The conclusion was also verified by the results of molecular and CETSA. To further verify this conclusion, the activity of PI3K/AKT1 signaling pathway was inhibited in A549 cells using LY294002. When the A549 cells were pretreated with LY294002, the protective effect of DAP on silica-induced injury was lost. In conclusion, the results of this study suggest that DAP alleviates pulmonary inflammation and fibrosis induced by silica by modulating the PI3K/AKT1 signaling pathway, and holds promise as a potentially effective treatment for silicosis.


Asunto(s)
Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Silicosis , Umbeliferonas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Humanos , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Neumonía/patología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Masculino , Pulmón/patología , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular
9.
Biotechnol Lett ; 46(3): 483-495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523201

RESUMEN

OBJECTIVES: We genetically modified dedifferentiated chondrocytes (DCs) using lentiviral vectors and adenoviral vectors encoding TGF-ß3 (referred to as transgenic groups below) and encapsulated these DCs in the microcavitary hydrogel and investigated the combinational effect on redifferentiation of the genetically manipulated DCs. RESULTS: The Cell Counting Kit-8 data indicated that both transgenic groups exhibited significantly higher cell viability in the first week but inferior cell viability in the subsequent timepoints compared with those of the control group. Real-time polymerase chain reaction and western blot analysis results demonstrated that both transgenic groups had a better effect on redifferentiation to some extent, as evidenced by higher expression levels of chondrogenic genes, suggesting the validity of combination with transgenic DCs and the microcavitary hydrogel on redifferentiation. Although transgenic DCs with adenoviral vectors presented a superior extent of redifferentiation, they also expressed greater levels of the hypertrophic gene type X collagen. It is still worth further exploring how to deliver TGF-ß3 more efficiently and optimizing the appropriate parameters, including concentration and duration. CONCLUSIONS: The results demonstrated the better redifferentiation effect of DCs with the combinational use of transgenic TGF-ß3 and a microcavitary alginate hydrogel and implied that DCs would be alternative seed cells for cartilage tissue engineering due to their easily achieved sufficient cell amounts through multiple passages and great potential to redifferentiate to produce cartilaginous extracellular matrix.


Asunto(s)
Diferenciación Celular , Condrocitos , Factor de Crecimiento Transformador beta3 , Condrocitos/citología , Condrocitos/metabolismo , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/farmacología , Vectores Genéticos/genética , Hidrogeles/química , Animales , Supervivencia Celular , Células Cultivadas , Adenoviridae/genética , Lentivirus/genética , Desdiferenciación Celular/genética , Ingeniería de Tejidos/métodos
10.
Heliyon ; 10(3): e25601, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333852

RESUMEN

Osteoporosis is the result of osteoclast formation exceeding osteoblast production, and current osteoporosis treatments targeting excessive osteoclast bone resorption have serious adverse effects. There is a need to fully understand the mechanisms of osteoclast-mediated bone resorption, identify new drug targets, and find better drugs to treat osteoporosis. Gar C (Gar C) is a major naturally occurring phytochemical isolated from mangosteen, and is a derivative of the naturally occurring phenolic antioxidant lutein. We used an OP mouse model established by ovariectomy (OVX). We found that treatment with Gar C significantly increased bone mineral density and significantly decreased the expression of TRAP, NFATC1 and CTSK relative to untreated OP mice. We found that Garcinone C could disrupt osteoclast activation and resorption functions by inhibiting RANKL-induced osteoclast differentiation as well as inhibiting the formation of multinucleated osteoclasts. Immunoblotting showed that Gar C downregulated the expression of osteoclast-related proteins. In addition, Gar C significantly inhibited RANKL-induced ROS production and affected NF-κB activity by inhibiting phosphorylation Formylation of P65 and phosphorylation and degradation of ikba. These data suggest that Gar C significantly reduced OVX-induced osteoporosis by inhibiting osteoclastogenesis and oxidative stress in bone tissue. Mechanistically, this effect was associated with inhibition of the ROS-mediated NF-κB pathway.

11.
Mol Cell ; 83(24): 4614-4632.e6, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37995688

RESUMEN

CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.


Asunto(s)
Lisina , Proteoma , Humanos , Proteoma/genética , Lisina/genética , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Codón
12.
Biomed Mater ; 18(6)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37751762

RESUMEN

Bone/cartilage repair and regeneration have been popular and difficult issues in medical research. Tissue engineering is rapidly evolving to provide new solutions to this problem, and the key point is to design the appropriate scaffold biomaterial. In recent years, microsphere-based scaffolds have been considered suitable scaffold materials for bone/cartilage injury repair because microporous structures can form more internal space for better cell proliferation and other cellular activities, and these composite scaffolds can provide physical/chemical signals for neotissue formation with higher efficiency. This paper reviews the research progress of microsphere-based scaffolds in bone/chondral tissue engineering, briefly introduces types of microspheres made from polymer, inorganic and composite materials, discusses the preparation methods of microspheres and the exploration of suitable microsphere pore size in bone and cartilage tissue engineering, and finally details the application of microsphere-based scaffolds in biomimetic scaffolds, cell proliferation and drug delivery systems.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Microesferas , Materiales Biocompatibles/química , Andamios del Tejido/química , Cartílago
13.
Trials ; 24(1): 546, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598200

RESUMEN

BACKGROUND: Pancreatoduodenectomy (PD) is traumatic, difficult to perform, and has a high incidence of postoperative complications and perioperative mortality. Postoperative complications and pain occur frequently and seriously affect the psychological status of patients. Esketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has analgesic and antidepressant effects. In this study, we aim to investigate the effect of esketamine on postoperative depression and pain in patients undergoing PD. METHODS/DESIGN: This prospective, single-center, randomized control trial will include 80 patients who will undergo elective PD. The patients will be randomly assigned to two groups: the experimental group that will receive esketamine (n = 40) and the control group (n = 40). In the esketamine group, the analgesic pump will be connected immediately after surgery. A solution of esketamine 1.5 mg/kg + sufentanil 2 µg/kg, diluted to 150 mL, will be administered continuously for 72 h at the background infusion and impact doses of 1 mL/h and 2 mL/time, respectively; the locking time will be 10 min. The control group will receive sufentanil 2 µg/kg that will be administered as per the esketamine group. The primary outcome will be the Hamilton Depression Scale (HAMD-17) score on the third day post-surgery (POD3). Secondary study indicators will include (1) visual analog scale (VAS) score and HAMD-17 score prior to surgery, immediately after entering the postanesthesia care unit (PACU) and 1, 2, 3, 4, and 5 days after surgery; (2) Richmond Agitation-Sedation Scale (RASS) score at 1, 2, 3, 4, and 5 days after surgery; (3) consumed doses of sufentanil and esketamine after surgery; (4) postoperative analgesia pump effective press times, rescue analgesia times, and rescue drug dosage, recording the number of rescue analgesia and rescue drug dosage at 6, 24, 48, and 72 h after the patient enters the PACU; (5) postoperative complications and adverse events; (6) postoperative hospital stay; (7) concentrations of brain-derived neurotrophic factor (BDNP), 5-hydroxytryptamine (5-HT), tumor necrosis factor (TNF-α) and interleukin-6, at 1, 3, and, 5 days post-surgery; and (8) the patient survival rate at 6 and 12 months post-surgery. DISCUSSION: The study hypothesis is that the postoperative HAMD-17 and VAS scores, incidence of postoperative adverse reactions, and concentration of serum markers BDNP, 5-HT, TNF-α, and IL-6 in the experimental group will be lower than those in the control group. TRIAL REGISTRATION: ClinicalTrials.gov ChiCTR2200066303. Registered on November 30, 2022. PROTOCOL VERSION: 1.0.


Asunto(s)
Analgesia , Sufentanilo , Humanos , Sufentanilo/efectos adversos , Depresión , Pancreaticoduodenectomía/efectos adversos , Estudios Prospectivos , Serotonina , Factor de Necrosis Tumoral alfa , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Dolor , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Analyst ; 148(15): 3476-3482, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37401671

RESUMEN

The identification of cysteine enantiomers is of great significance in the biopharmaceutical industry and medical diagnostics. Herein, we develop an electrochemical sensor to discriminate cysteine (Cys) enantiomers based on the integration of a copper metal-organic framework (Cu-MOF) with an ionic liquid. Because the combine energy of D-cysteine (D-Cys) with Cu-MOF (-9.905 eV) is lower than that of L-cysteine (L-Cys) with Cu-MOF (-9.694 eV), the decrease in the peak current of the Cu-MOF/GCE induced by D-Cys is slightly higher than that induced by L-Cys in the absence of an ionic liquid. In contrast, the combine energy of L-Cys with an ionic liquid (-1.084 eV) is lower than that of D-Cys with an ionic liquid (-1.052 eV), and the ionic liquid is easier to cross-link with L-Cys than with D-Cys. When an ionic liquid is present, the decrease in the peak current of the Cu-MOF/GCE induced by D-Cys is much higher than that induced by L-Cys. Consequently, this electrochemical sensor can efficiently discriminate D-Cys from L-Cys, and it can sensitively detect D-Cys with a detection limit of 0.38 nM. Moreover, this electrochemical sensor exhibits good selectivity, and it can accurately measure the spiked D-Cys in human serum with a recovery ratio of 100.2-102.6%, with wide applications in biomedical research and drug discovery.


Asunto(s)
Líquidos Iónicos , Estructuras Metalorgánicas , Humanos , Cisteína , Cobre , Estereoisomerismo , Técnicas Electroquímicas , Límite de Detección
15.
Anal Chim Acta ; 1272: 341480, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355327

RESUMEN

Chirality is an important property of nature and it regulates fundamental phenomena in nature and organisms. Here, we develop a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods (L-CuCys NRs) to discriminate tryptophan (Trp) isomers. The chiral L-CuCys NRs are prepared in alkaline solution based on the facile coordination reaction between the sulfhydryl groups of L-Cys and copper ions. Since the stability constant (K) of L-CuCys NRs with L-Trp (752) are much higher than that of L-CuCys NRs with D-Trp (242), the cross-linking bonds between L-CuCys NRs and L-Trp are more stable than those between L-CuCys NRs and D-Trp. Consequently, this electrochemical sensor can selectively recognize the Trp isomers with an enantiomeric electrochemical difference ratio (IL-Trp/ID-Trp) of 3.22, and it exhibits a detection limit of 0.26 µM for L-Trp. Moreover, this electrochemical sensor can quantitatively measure Trp isomers in complex samples. Importantly, this electrochemical sensor has the characteristics of high stability, good repeatability, easy fabrication, low cost, and efficient discrimination of tryptophan (Trp) isomers.


Asunto(s)
Nanotubos , Triptófano , Triptófano/química , Aminoácidos , Cobre/química , Estereoisomerismo , Técnicas Electroquímicas
16.
J Genet Genomics ; 50(12): 948-959, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37286164

RESUMEN

Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently been associated with neurodevelopmental disorders, although the mechanisms linking O-GlcNAc homeostasis to neurodevelopment are not understood. Here, we investigate the effects of perturbing protein O-GlcNAcylation using transgenic Drosophila lines that overexpress a highly active OGA. We reveal that temporal reduction of protein O-GlcNAcylation in early embryos leads to reduced brain size and olfactory learning in adult Drosophila. Downregulation of O-GlcNAcylation induced by the exogenous OGA activity promotes nuclear foci formation of Polycomb-group protein Polyhomeotic and the accumulation of excess K27 trimethylation of histone H3 (H3K27me3) at the mid-blastula transition. These changes interfere with the zygotic expression of several neurodevelopmental genes, particularly shortgastrulation (sog), a component of an evolutionarily conserved sog-Decapentaplegic (Dpp) signaling system required for neuroectoderm specification. Our findings highlight the importance of early embryonic O-GlcNAcylation homeostasis for the fidelity of facultative heterochromatin redeployment and initial cell fate commitment of neuronal lineages, suggesting a possible mechanism underpinning OGT-associated intellectual disability.


Asunto(s)
Drosophila , Heterocromatina , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , Heterocromatina/genética , Procesamiento Proteico-Postraduccional , Homeostasis , Desarrollo Embrionario/genética , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
17.
Neuron ; 111(15): 2414-2431.e7, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37224813

RESUMEN

Pain and itch are two closely related but essentially distinct sensations that elicit different behavioral responses. However, it remains mysterious how pain and itch information is encoded in the brain to produce differential perceptions. Here, we report that nociceptive and pruriceptive signals are separately represented and processed by distinct neural ensembles in the prelimbic (PL) subdivision of the medial prefrontal cortex (mPFC) in mice. Pain- and itch-responsive cortical neural ensembles were found to significantly differ in electrophysiological properties, input-output connectivity profiles, and activity patterns to nociceptive or pruriceptive stimuli. Moreover, these two groups of cortical neural ensembles oppositely modulate pain- or itch-related sensory and emotional behaviors through their preferential projections to specific downstream regions such as the mediodorsal thalamus (MD) and basolateral amygdala (BLA). These findings uncover separate representations of pain and itch by distinct prefrontal neural ensembles and provide a new framework for understanding somatosensory information processing in the brain.


Asunto(s)
Complejo Nuclear Basolateral , Corteza Prefrontal , Ratones , Animales , Corteza Prefrontal/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Dolor
18.
Aging Clin Exp Res ; 35(7): 1531-1539, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37204755

RESUMEN

BACKGROUND: Postoperative delirium (POD) is the most common postoperative complication in elderly patients, especially in older aged patients (aged 75 years or over). The development of electroencephalography analysis could provide indicators for early detection, intervention, and evaluation. If there are pathophysiological changes in the brain, the BIS value will also change accordingly. In this study, we investigated the predictive value of the preoperative bispectral (BIS) index in POD for patients aged over 75 years. METHODS: In this prospective study, patients (≥ 75 years) undergoing elective non-neurosurgery and non-cardiac surgery under general anesthesia were included (n = 308). Informed consent was obtained from all involved patients. Before the operation and during the first 5 postoperative days, delirium was assessed with the confusion assessment method by trained researchers twice every day. Thereafter, the preoperative bedside BIS of each patient was dynamically acquired by the BIS VISTA monitoring system and the BIS monitoring of electrodes. A series of evaluation scales were assessed before and after surgery. A preoperative predictive score was generated according to the results of multivariable logistic regression. The receiver operating characteristic curves were drawn and the area under the curves was estimated to evaluate the perioperative diagnostic values of BIS and preoperative predictive score for POD. The specificity, sensitivity, positive predictive value (PPV), and negative predictive (NPV) value were calculated. RESULTS: Delirium occurred in 50 of 308 (16.2%) patients. The median BIS of delirious patients was 86.7 (interquartile range [IQR] 80.0-94.0), lower than that of the non-delirious 91.9 (IQR 89.7-95.4, P < 0.001). According to the ROC curve of the BIS index, the optimal cut-off value was 84, with a sensitivity of 48%, specificity of 87%, PPV 43%, NPV 89% for forecasting POD and the area under curves was 0.67. While integrating BIS, mini-mental state examination, anemia, activities of daily living, and blood urea nitrogen, the model had a sensitivity of 78%, specificity of 74%, PPV of 0.37%, and NPV of 95% for forecasting POD, and the area under curves was 0.83. CONCLUSIONS: Preoperative bedside BIS in delirium patients was lower than that in non-delirium patients when undergoing non-neurosurgery and non-cardiac surgery in patients aged over 75. The model of integrating BIS, mini-mental state examination, anemia, activities of daily living, and blood urea nitrogen is a promising tool for predicting postoperative delirium in patients aged over 75.


Asunto(s)
Delirio del Despertar , Anciano , Humanos , Persona de Mediana Edad , Delirio del Despertar/diagnóstico , Estudios de Cohortes , Estudios Prospectivos , Actividades Cotidianas , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/etiología , Factores de Riesgo
19.
PLoS Genet ; 19(4): e1010740, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37099597

RESUMEN

Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Oxidasas Duales/farmacología , NADP , Especies Reactivas de Oxígeno , Quinasa de la Caseína I/genética , Estrés Oxidativo/genética , NADPH Oxidasas , Tetraspaninas/genética
20.
Zhen Ci Yan Jiu ; 47(10): 859-65, 2022 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-36301161

RESUMEN

OBJECTIVE: To explore the effect of eye acupuncture on autophagy and expressions of autophagy-related proteins Beclin1, LC3B, ATF6 and XBP1 in the infarction area of brain tissue in rats with acute cerebral ischemia-reperfusion injury (CIRI), so as to explore its mechanisms underlying improvement of CIRI. METHODS: Male SD rats were randomly divided into sham operation, model and eye acupuncture groups (n=16 in each group). The CIRI model was prepared by occlusion of the middle cerebral artery. Eye acupuncture stimulation was applied to bilateral "Gan"(Liver), "Shangjiao"(Upper-energizer), "Xiajiao"(Lower-energizer) and "Shen"(Kidney) regions at 0, 12 and 24 h after CIRI, 30 min each time. The neurological deficit score was given by referring to Longa's method, and TTC staining used to determine the success of model replication. After the treatment, the pathological changes of the cerebral infarction area were observed under light microscope, and the autophagosomes were observed by electron microscope. The protein expression levels of LC3B, Beclin1, ATF6 and XBP1 in the infarction area of brain tissue were detected by Western blot. The immunoactivity of Beclin1 and the immunofluorescence density of ATF6 and XBP1 in the infarction area of brain tissue were determined by immunohistochemistry. RESULTS: The Longa's score, and the protein expression levels of LC3B, Beclin1, ATF6 and XBP1 and immunoactivity or immunofluorescence density of Beclin1, ATF6 and XBP1 were significantly higher in the model group than those in the sham operation group (P<0.01), and considerably lower in the eye acupuncture group than those in the model group (P<0.01). Under light microscope, the model group had typical ethmoidal reticular cerebral infarction, while the eye acupuncture group had significantly smaller areas and clearer edges. Under electron microscope, there were more autophagosomes in the cytoplasm of neurons in the model group, and fewer autophagosomes in the eye acupuncture group (in contrast to the model group). CONCLUSION: Eye acupuncture can improve the neurological function and mitigate cerebral injury in CIRI rats which may be associated with its function in inhibiting autophagy in the brain tissue by regulating ATF6 pathway.


Asunto(s)
Terapia por Acupuntura , Isquemia Encefálica , Daño por Reperfusión , Animales , Masculino , Ratas , Factor de Transcripción Activador 6/genética , Autofagia/genética , Beclina-1/genética , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Infarto Cerebral/complicaciones , Ratas Sprague-Dawley , Daño por Reperfusión/genética , Daño por Reperfusión/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...