Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 132: 155827, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38955059

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the main pathological basis for the development of cardiovascular diseases. Vascular inflammation is an important factor in the formation of AS, and macrophage pyroptosis plays a key role in AS due to its unique inflammatory response. Guizhitongluo Tablet (GZTLT) has shown clinically effective in treating patients with AS, but its mechanism is elusive. PURPOSE: This study was to determine the effects of GZTLT on atherosclerotic vascular inflammation and pyroptosis and to understand its underlying mechanism. MATERIALS AND METHODS: The active constituents of GZTLT were analysed by means of UPLC-HRMS. In vivo experiments were performed using ApoE-/- mice fed a high fat diet for 8 weeks, followed by treatment with varying concentrations of GZTLT orally by gavage and GsMTx4 (GS) intraperitoneally and followed for another 8 weeks. Oil red O, Haematoxylin-eosin (HE) and Masson staining were employed to examine the lipid content, plaque size, and collagen fibre content of the mouse aorta. Immunofluorescence staining was utilised to identify macrophage infiltration, as well as the expression of Piezo1 and NLRP3 proteins in aortic plaques. The levels of aortic inflammatory factors were determined using RT-PCR and ELISA. In vitro, foam cell formation in bone marrow-derived macrophages (BMDMs) was observed using Oil Red O staining. Intracellular Ca2+ measurements were performed to detect the calcium influx in BMDMs, and the expression of NLRP3 and its related proteins were detected by Western blot. RESULTS: The UPLC-HRMS analysis revealed 31 major components of GZTLT. Our data showed that GZTLT inhibited aortic plaque formation in mice and increased plaque collagen fibre content to stabilise plaques. In addition, GZTLT could restrain the expression of serum lipid levels and suppress macrophage foam cell formation. Further studies found that GZTLT inhibited macrophage infiltration in aortic plaques and suppressed the expression of inflammatory factors. It is noteworthy that GZTLT can restrain Piezo1 expression and reduce Ca2+ influx in BMDMs. Additionally, we found that GZTLT could regulate NLRP3 activation and pyroptosis by inhibiting Piezo1. CONCLUSION: The present study suggests that GZTLT inhibits vascular inflammation and macrophage pyroptosis through the Piezo1/NLRP3 signaling pathway, thereby delaying AS development. Our finding provides a potential target for AS treatment and drug discovery.

2.
Theranostics ; 13(15): 5418-5434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908726

RESUMEN

Background and Aims: Liver fibrosis is the common pathological pathway of chronic liver diseases and its mechanisms of which have not been fully declared. Macrophages play essential roles in progression of liver fibrosis partially by sensing abnormal mechanical signals. The aim of the study is to investigate the functions of macrophage Piezo1, a mechano-sensitive ion channel, in liver fibrosis. Approach and Results: Immunofluorescence in human and murine fibrotic liver samples revealed that expression of macrophage Piezo1 was increased. Myeloid-specific Piezo1 knockout (Piezo1ΔLysM) attenuated liver fibrosis by decreased collagen deposition and epithelial-mesenchymal transition (EMT). In Piezo1ΔLysM mice, less inflammation during development of liver fibrosis was observed by lessened macrophage infiltration, decreased M1 polarization and expression of inflammatory cytokines. RNA-seq data showed macrophage Piezo1 regulated transcription of cathepsin S (CTSS). Piezo1ΔLysM inhibited expression and activity of CTSS in vitro and in vivo and regulated T cell activity. Furthermore, inhibition of CTSS reversed macrophage inflammatory response driven by Piezo1 activation and LPS. Macrophage Piezo1 activation promoted CTSS secretion due to increased activity of Ca2+-dependent calpain protease induced by Ca2+ influx to cleave lysosome-associated membrane protein-1 (LAMP1). Pharmacological inhibition of calpain activity partially blocked Piezo1 mediated CTSS secretion. Conclusions: Macrophage Piezo1 deficiency limits the progression of liver fibrosis by inhibited inflammatory response and decreased secretion of CTSS. These findings suggest that targeting Piezo1 channel may be a potential strategy for treating hepatic fibrosis.


Asunto(s)
Calpaína , Cirrosis Hepática , Animales , Humanos , Ratones , Calpaína/metabolismo , Citocinas/metabolismo , Fibrosis , Canales Iónicos/genética , Canales Iónicos/metabolismo , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo
3.
Eur J Pharmacol ; 956: 175951, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541373

RESUMEN

Escin is an active ingredient used in the treatment of phlebitis. However, the pharmacological mechanism of escin remains largely unclear. Here, we aimed to determine the molecular basis for the therapeutic effect of escin. Human umbilical vein endothelial cells (HUVECs) were subjected to shear-stress assays with or without escin. Intracellular Ca2+ levels, inflammatory factors and the activity of NF-κB were measured in endothelial cells (ECs) after mechanical-stretch or Yoda1 activation. Isometric tensions in aortic rings were identified. In addition, murine liver endothelial cells (MLECs) isolated from Piezo1 endothelial specific knockout mice (Piezo1△ EC) were used to explore the role of Piezo1. Our results showed that escin inhibited inflammatory factors, intracellular Ca2+ levels and Yoda1-evoked relaxation of thoracic aorta rings. Cell alignment induced by shear stress was inhibited by escin in HUVECs, and Piezo1 siRNA was used to show that this effect was dependent on Piezo1 channels. Moreover, escin reduced the inflammation and inhibited the activity of NF-κB in ECs with mechanical-stretch, which were insensitive to Piezo1 deletion. SN50, an NF-κB antagonist, significantly inhibited the mechanical stretch-induced inflammatory response. In addition, escin reduced inflammation in ECs subjected to mechanical-stretch, which was insensitive after using NF-κB antagonist. Collectively, our results demonstrate that escin inhibits the mechanical stretch-induced inflammatory response via a Piezo1-mediated NF-κB pathway. This study improves our understanding of a molecular target of escin that mediates its effect on chronic vascular inflammation.


Asunto(s)
Escina , Canales Iónicos , Ratones , Humanos , Animales , Canales Iónicos/metabolismo , FN-kappa B/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Noqueados , Inflamación/tratamiento farmacológico
4.
Biomed Pharmacother ; 163: 114755, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37105072

RESUMEN

Vascular inflammation is a common pathological basis underlying many cardiovascular diseases. As such, the treatment of vascular inflammation has attracted increasing attention. The Piezo1 pathway has long been shown to play an important role in the development of vascular inflammation. Jatrorrhizine (Jat) is an effective component of Rhizoma Coptidis. It is commonly used in the treatment of inflammatory diseases and is a potential drug for the treatment of vascular inflammation. However, its mechanism of action on vascular inflammation remains unclear, as is the effect of Jat on Piezo1. Therefore, we conducted a series of studies on the effect of jatrorrhizine on vascular inflammation in vivo and in vitro. In this study, the effect of Jat treatment on H2O2-induced endothelial cell inflammation was investigated in vitro, and the potential mechanism of Jat was explored. In in vivo experiments, we investigated the effect of jatrorrhizine on vascular inflammation induced by carotid artery ligation and its effect on the Piezo1 signaling pathway. We found that Jat could reduce the severity of carotid intimal hyperplasia and local vascular inflammation in mice. In the H2O2-induced inflammation model, cell proliferation and migration were significantly inhibited, and the expression of pro-inflammatory factors was reduced. Importantly, the addition of Jat to endothelial Piezo1 knockout did not produce further significant inhibition. We believe that the role of Jat in the treatment of vascular inflammation may be related to Piezo1. And we believe that Jat has great potential in the treatment of vascular inflammation and cardiovascular diseases.


Asunto(s)
Berberina , Enfermedades Cardiovasculares , Ratones , Animales , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Canales Iónicos/metabolismo
5.
Chem Commun (Camb) ; 58(62): 8690-8693, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35833251

RESUMEN

We report a peptidic dual-targeting drug delivery platform (integrins targeting and self-assembly instructed by matrix metalloproteinases) towards inflamed endothelial cells, which improved the anti-inflammatory ability of the loaded drug (i.e., puerarin) in vitro and thus improved the antiatherogenic effect of the loaded drug (i.e., puerarin) in vivo.


Asunto(s)
Aterosclerosis , Células Endoteliales , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apolipoproteínas E , Aterosclerosis/tratamiento farmacológico , Ratones , Péptidos/farmacología , Péptidos/uso terapéutico
6.
Hypertension ; 79(5): 918-931, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35417225

RESUMEN

BACKGROUND: Macrophages play important roles in renal fibrosis, partially by sensing mechanical forces, including shear stress and increased stiffness. The mechanically activated cationic channel Piezo1 drives vascular formation and blood pressure regulation to inflammatory responses, or cancer, but its role in macrophages in fibrotic kidney is elusive. Here, we hypothesized that Piezo1 in macrophages may have functions in renal fibrosis. METHODS: We established a genetically engineered mouse model with Piezo1 specific knockout in myeloid cells and challenged with unilateral ureteric obstruction operation and folic acid treatment to induce the renal fibrosis, aiming to investigate the function of the mechanical-sensitive protein Piezo1 in macrophages in renal fibrosis and its underlying mechanisms. RESULTS: Myeloid Piezo1 was indispensable for renal fibrosis generation. Piezo1 gene deletion in the myeloid lineage was protective in mice with renal fibrosis. Further analyses revealed that macrophage accumulation in the injured kidney depended on the Piezo1-regulated C-C motif chemokine ligand 2, C-C motif chemokine receptor 2 pathway, and Notch signaling cascade. Moreover, Piezo1 deletion restrained macrophage inflammation and consequently suppressed kidney fibrosis and epithelial-mesenchymal transition. In vitro assays showed that Piezo1 deficiency blocked lipopolysaccharide and Piezo1 activation-induced inflammatory responses in bone marrow-derived macrophages. Mechanistically, Piezo1 regulated inflammation through the Ca2+-dependent intracellular cysteine protease, as the pharmacological inhibition of calpain blocked the proinflammatory role of Piezo1. CONCLUSIONS: This study characterized the important function of Piezo1 in renal fibrosis. Targeting the Piezo1 channels by genetic or pharmacological manipulations may be a promising strategy for the treatment of renal fibrosis.


Asunto(s)
Canales Iónicos , Enfermedades Renales , Animales , Fibrosis , Inflamación/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Br J Pharmacol ; 179(14): 3778-3814, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35194776

RESUMEN

BACKGROUND AND PURPOSE: Salvianolic acid B (SalB) is effective for treating cardiovascular diseases. However, the molecular mechanisms underlying its therapeutic effects remain unclear. Mechanosensitive Piezo1 channels play important roles in vascular biology, although their pharmacological properties are poorly defined. Here, we aimed to identify novel Piezo1 inhibitors and gain insights into their mechanisms of action. EXPERIMENTAL APPROACH: Intracellular Ca2+ ions were measured in HUVECs, murine liver endothelial cells (MLECs), THP-1 and RAW264.7 cell lines and bone marrow-derived macrophages (BMDMs). Isometric tensions in mouse thoracic aorta were recorded. Shear-stress assays with HUVECs were conducted. Patch-clamp recordings with mechanical stimulation were performed with HUVECs in whole-cell mode. Foam cell formation was induced by treating BMDMs with oxidised LDL (oxLDL). Atherosclerotic plaque assays were performed with Ldlr-/- and Piezo1 genetically depleted mice on a high-fat diet. KEY RESULTS: Salvianolic acid B inhibited Yoda1-induced Ca2+ influx in HUVECs and MLECs. Similar results were observed in macrophage cell lines and BMDMs. Furthermore, we demonstrated that salvianolic acid B inhibited Yoda1- and mechanically activated currents. Salvianolic acid B suppressed Yoda1-induced aortic ring relaxation and inhibited HUVECs alignment in the direction of shear stress. Additionally, Yoda1 enhanced the formation of foam cells, which was reversed by salvianolic acid B. Salvianolic acid B also inhibited formation of atherosclerotic plaques and was insensitive to Piezo1 genetic depletion. CONCLUSION AND IMPLICATIONS: Our study provides novel mechanistic insights into the inhibitory role of salvianolic acid B against Piezo1 channels and improves our understanding of salvianolic acid B in preventing atherosclerotic lesions.


Asunto(s)
Aterosclerosis , Benzofuranos , Canales Iónicos , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Benzofuranos/farmacología , Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Ratones , Células RAW 264.7
8.
Cell Calcium ; 97: 102431, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34153657

RESUMEN

Piezo1, a calcium-permeable non-selective cationic channel that senses mechanical stimulation in multicellular organisms, mediates various biological processes, including angiogenesis. The supply of nutrients and oxygen through newly formed blood vessels at the fractured lesion is critical for bone fracture repair. The elucidation of the underlying mechanisms involved in angiogenesis and bone repair can aid in improving fracture healing. Here, mice with endothelial cell-specific deletion of Piezo1 channels were used to examine the role of Piezo1 in the initiation of fracture healing. The expression and distribution of Piezo1 was explored in the vasculature of the bone. The deletion of endothelial Piezo1 resulted in impaired bone fracture repair, downregulation of calcium-activated proteolytic calpain activity during vascularization, inhibition of osteoblast maturation and ossification, downregulation of phosphorylated PI3K-AKT, and impaired Notch signaling during bone fracture union. These findings indicated that Piezo1 protein is a potential target for enhancing bone regeneration and treating delayed or nonunion bone fractures.

9.
Cell Calcium ; 95: 102367, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33610907

RESUMEN

Accumulating evidence has revealed the mechanosensitive ion channel protein Piezo1 is contributing to tumorigenesis. However, its role in hepatocellular carcinoma (HCC) remains unexplored. In this study, we demonstrated that Piezo1 was expressed in the HepG2 cell line and depletion of Piezo1 impaired proliferation and migration, as well as increased apoptosis in these cells. Using a Piezo1-specific activator, Yoda1, we identified that calcium entry induced by Yoda1 resulted in phosphorylation of JNK, p38, and ERK, thereby activating the mitogen-activated protein kinase (MAPK) pathway, in a dose- and time-dependent manner. More strikingly, Piezo1 activation integrated with YAP signaling to control the nuclear translocation of YAP and regulation of its target genes. JNK, p38, and ERK (MAPK signaling) regulated Yoda1-induced YAP activation. Consistent with the association of calpain with Piezo1, we also found that calpain activity was decreased by siRNA-mediated knockdown of Piezo1. In addition, the growth of HCC tumors was inhibited in Piezo1 haploinsufficient mice. Together, our findings establish that the Piezo1/MAPK/YAP signaling cascade is essential for HepG2 cell function. These results highlight the importance of Piezo1 in HCC and the potential utility of Piezo1 as a biomarker and therapeutic target.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Canales Iónicos/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Factores de Transcripción/metabolismo , Carga Tumoral/fisiología , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/prevención & control , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Canales Iónicos/deficiencia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/prevención & control , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pirazinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tiadiazoles/farmacología , Carga Tumoral/efectos de los fármacos
10.
J Cell Mol Med ; 25(1): 170-183, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33314583

RESUMEN

Yes-associated protein (YAP), a major effector of the Hippo signalling pathway, is widely implicated in vascular pathophysiology processes. Here, we identify a new role of YAP in the regulation of vascular senescence. The inhibition or deficiency and overexpression of YAP were performed in human umbilical vein endothelial cells (HUVECs) and isolated vascular tissues. Cellular and vascular senescence was assessed by analysis of the senescence-associated ß-galactosidase (SA-ß-gal) and expression of senescence markers P16, P21, P53, TERT and TRF1. We found that YAP was highly expressed in old vascular tissues, inhibition and knockdown of YAP decreased senescence, while overexpression of YAP increased the senescence in both HUVECs and vascular tissues. In addition, autophagic flux blockage and mTOR pathway activation were observed during YAP-induced HUVECs and vascular senescence, which could be relieved by the inhibition and knockdown of YAP. Moreover, YAP-promoted cellular and vascular senescence could be relieved by mTOR inhibition. Collectively, our findings indicate that YAP may serve as a potential therapeutic target for ageing-associated cardiovascular disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Vasos Sanguíneos/patología , Senescencia Celular , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratas Sprague-Dawley , Proteínas Señalizadoras YAP
11.
Front Pharmacol ; 11: 768, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523536

RESUMEN

Piezo1, a mechanosensitive Ca2+-permeable non-selective cationic ion channel protein, is involved in a wide range of biological processes and plays crucial roles in vascular development. However, the pharmacology of this protein is in its infancy. Yoda1, the first specific chemical activator of Piezo1 channels, can activate Piezo1 in absence of mechanical stimulation. Hence, we sought to identify inhibitors of Yoda1 from Traditional Chinese Medicine (TCM). Intracellular Ca2+ measurements were conducted in human umbilical vein endothelial cells (HUVECs), HEK 293T cells overexpressing TRPC5 and TRPM2 channels, as well as in CHO K1 cells overexpressing TRPV4 channels. We identified tubeimoside I (TBMS1) as a strong inhibitor of the Yoda1 response and demonstrated its selectivity for the Piezo1 channels. Similarly, Yoda1-induced inhibitory results were obtained in Piezo1 wild-type overexpressed cells, murine liver endothelial cells (MLECs), and macrophages. The physiological responses of TBMS1 were identified by isometric tension, which can inhibit Yoda1 relaxation of aortic rings. Our results demonstrated that TBMS1 can effectively antagonize Yoda1 induced Piezo1 channel activation. This study sheds light on the existence of Yoda1 inhibitors and improves the understanding of vascular pharmacology through Piezo1 channels.

12.
Chem Commun (Camb) ; 55(50): 7175-7178, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31162503

RESUMEN

The identification and removal of senescent cells is very important to improve human health and prolong life. In this study, we introduced a novel strategy of ß-galactosidase (ß-Gal) instructed peptide self-assembly to selectively form nanofibers and hydrogels in senescent cells. We demonstrated that the in situ formed nanofibers could alleviate endothelial cell senescence by reducing p53, p21, and p16INK4a expression levels. We also demonstrated that our strategy could selectively remove senescent endothelial cells by inducing cell apoptosis, with an increase in the BAX/BCL-2 ratio and caspase-3 expression. Our study reports the first example of enzyme-instructed self-assembly (EISA) by a sugar hydrolase, which may lead to the development of supramolecular nanomaterials for the diagnosis and treatment of many diseases, such as cancer, and for other applications, such as wound healing and senescence.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/fisiología , Nanofibras , beta-Galactosidasa/metabolismo , Regulación de la Expresión Génica , Humanos , Hidrolasas/metabolismo , Lipopolisacáridos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...