Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 42(4): 608-616, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37217750

RESUMEN

Little is known about the biological roles of glycosylated RNAs (glycoRNAs), a recently discovered class of glycosylated molecules, because of a lack of visualization methods. We report sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA) to visualize glycoRNAs in single cells with high sensitivity and selectivity. The signal output of ARPLA occurs only when dual recognition of a glycan and an RNA triggers in situ ligation, followed by rolling circle amplification of a complementary DNA, which generates a fluorescent signal by binding fluorophore-labeled oligonucleotides. Using ARPLA, we detect spatial distributions of glycoRNAs on the cell surface and their colocalization with lipid rafts as well as the intracellular trafficking of glycoRNAs through SNARE protein-mediated secretory exocytosis. Studies in breast cell lines suggest that surface glycoRNA is inversely associated with tumor malignancy and metastasis. Investigation of the relationship between glycoRNAs and monocyte-endothelial cell interactions suggests that glycoRNAs may mediate cell-cell interactions during the immune response.


Asunto(s)
Oligonucleótidos , ARN , Línea Celular
2.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686584

RESUMEN

Recurrent glioblastoma (rGBM) is a highly aggressive form of brain cancer that poses a significant challenge for treatment in neuro-oncology, and the survival status of patients after relapse usually means rapid deterioration, thus becoming the leading cause of death among patients. In recent years, immunotherapy has emerged as a promising strategy for the treatment of recurrent glioblastoma by stimulating the body's immune system to recognize and attack cancer cells, which could be used in combination with other treatments such as surgery, radiation, and chemotherapy to improve outcomes for patients with recurrent glioblastoma. This therapy combines several key methods such as the use of monoclonal antibodies, chimeric antigen receptor T cell (CAR-T) therapy, checkpoint inhibitors, oncolytic viral therapy cancer vaccines, and combination strategies. In this review, we mainly document the latest immunotherapies for the treatment of glioblastoma and especially focus on rGBM.

3.
Sci Immunol ; 8(82): eadg3196, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115914

RESUMEN

Granzyme A from killer lymphocytes cleaves gasdermin B (GSDMB) and triggers pyroptosis in targeted human tumor cells, eliciting antitumor immunity. However, GSDMB has a controversial role in pyroptosis and has been linked to both anti- and protumor functions. Here, we found that GSDMB splicing variants are functionally distinct. Cleaved N-terminal (NT) fragments of GSDMB isoforms 3 and 4 caused pyroptosis, but isoforms 1, 2, and 5 did not. The nonfunctional isoforms have a deleted or modified exon 6 and therefore lack a stable belt motif. The belt likely contributes to the insertion of oligomeric GSDMB-NTs into the membrane. Consistently, noncytotoxic GSDMB-NTs blocked pyroptosis caused by cytotoxic GSDMB-NTs in a dominant-negative manner. Upon natural killer (NK) cell attack, GSDMB3-expressing cells died by pyroptosis, whereas GSDMB4-expressing cells died by mixed pyroptosis and apoptosis, and GSDMB1/2-expressing cells died only by apoptosis. GSDMB4 partially resisted NK cell-triggered cleavage, suggesting that only GSDMB3 is fully functional. GSDMB1-3 were the most abundant isoforms in the tested tumor cell lines and were similarly induced by interferon-γ and the chemotherapy drug methotrexate. Expression of cytotoxic GSDMB3/4 isoforms, but not GSDMB1/2 isoforms that are frequently up-regulated in tumors, was associated with better outcomes in bladder and cervical cancers, suggesting that GSDMB3/4-mediated pyroptosis was protective in those tumors. Our study indicates that tumors may block and evade killer cell-triggered pyroptosis by generating noncytotoxic GSDMB isoforms. Therefore, therapeutics that favor the production of cytotoxic GSDMB isoforms by alternative splicing may improve antitumor immunity.


Asunto(s)
Empalme Alternativo , Piroptosis , Humanos , Apoptosis , Isoformas de Proteínas/genética , Células Asesinas Naturales
4.
Comput Struct Biotechnol J ; 21: 1533-1542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36879885

RESUMEN

Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.

5.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36752347

RESUMEN

Alzheimer's disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible for the occurrence of the disease. Although previous reports identified quite a few AD-associated genes, they were mostly limited owing to patient sample size and selection bias. There is a lack of comprehensive research aimed to identify AD-associated risk mutations systematically. To address this challenge, we hereby construct a large-scale AD mutation and co-mutation framework ('AD-Syn-Net'), and propose deep learning models named Deep-SMCI and Deep-CMCI configured with fully connected layers that are capable of predicting cognitive impairment of subjects effectively based on genetic mutation and co-mutation profiles. Next, we apply the customized frameworks to data sets to evaluate the importance scores of the mutations and identified mutation effectors and co-mutation combination vulnerabilities contributing to cognitive impairment. Furthermore, we evaluate the influence of mutation pairs on the network architecture to dissect the genetic organization of AD and identify novel co-mutations that could be responsible for dementia, laying a solid foundation for proposing future targeted therapy for AD precision medicine. Our deep learning model codes are available open access here: https://github.com/Pan-Bio/AD-mutation-effectors.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Aprendizaje Profundo , Humanos , Enfermedad de Alzheimer/genética , Imagen por Resonancia Magnética , Disfunción Cognitiva/genética , Mutación
6.
Front Oncol ; 12: 900082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226069

RESUMEN

Glioblastomas (GBM) are the most common and aggressive form of primary malignant brain tumor in the adult population, and, despite modern therapies, patients often develop recurrent disease, and the disease remains incurable with median survival below 2 years. Resistance to bevacizumab is driven by hypoxia in the tumor and evofosfamide is a hypoxia-activated prodrug, which we tested in a phase 2, dual center (University of Texas Health Science Center in San Antonio and Dana Farber Cancer Institute) clinical trial after bevacizumab failure. Tumor hypoxic volume was quantified by 18F-misonidazole PET. To identify circulating metabolic biomarkers of tumor hypoxia in patients, we used a high-resolution liquid chromatography-mass spectrometry-based approach to profile blood metabolites and their specific enantiomeric forms using untargeted approaches. Moreover, to evaluate early response to treatment, we characterized changes in circulating metabolite levels during treatment with combined bevacizumab and evofosfamide in recurrent GBM after bevacizumab failure. Gamma aminobutyric acid, and glutamic acid as well as its enantiomeric form D-glutamic acid all inversely correlated with tumor hypoxia. Intermediates of the serine synthesis pathway, which is known to be modulated by hypoxia, also correlated with tumor hypoxia (phosphoserine and serine). Moreover, following treatment, lactic acid was modulated by treatment, likely in response to a hypoxia mediated modulation of oxidative vs glycolytic metabolism. In summary, although our results require further validation in larger patients' cohorts, we have identified candidate metabolic biomarkers that could evaluate the extent of tumor hypoxia and predict the benefit of combined bevacizumab and evofosfamide treatment in GBM following bevacizumab failure.

7.
Comput Struct Biotechnol J ; 20: 3511-3521, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860408

RESUMEN

Effective and precise classification of glioma patients for their disease risks is critical to improving early diagnosis and patient survival. In the recent past, a significant amount of multi-omics data derived from cancer patients has emerged. However, a robust framework for integrating multi-omics data types to efficiently and precisely subgroup glioma patients and predict survival prognosis is still lacking. In addition, effective therapeutic targets for treating glioma patients with poor prognoses are in dire need. To begin to resolve this difficulty, we developed i-Modern, an integrated Multi-omics deep learning network method, and optimized a sophisticated computational model in gliomas that can accurately stratify patients based on their prognosis. We built a survival-associated predictive framework integrating transcription profile, miRNA expression, somatic mutations, copy number variation (CNV), DNA methylation, and protein expression. This framework achieved promising performance in distinguishing high-risk glioma patients from those with good prognoses. Furthermore, we constructed multiple fully connected neural networks that are trained on prioritized multi-omics signatures or even only potential single-omics signatures, based on our customized scoring system. Together, the landmark multi-omics signatures we identified may serve as potential therapeutic targets in gliomas.

8.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35762154

RESUMEN

Abnormal accumulation of R-loops results in replication stress, genome instability, chromatin alterations and gene silencing. Little research has been done to characterize functional relationships among R-loops, histone marks, RNA polymerase II (RNAPII) transcription and gene regulation. We built extremely randomized trees (ETs) models to predict the genome-wide R-loops using RNAPII and multiple histone modifications chromatin immunoprecipitation (ChIP)-seq, DNase-seq, Global Run-On sequencing (GRO-seq) and R-loop profiling data. We compared the performance of ET models to multiple machine learning approaches, and the proposed ET models achieved the best and extremely robust performances. Epigenetic profiles are highly predictive of R-loops genome-widely and they are strongly associated with R-loop formation. In addition, the presence of R-loops is significantly correlated with RNAPII transcription activity, H3K4me3 and open chromatin around the transcription start site, and H3K9me1 and H3K9me3 around the transcription termination site. RNAPII pausing defects were correlated with 5'R-loops accumulation, and transcriptional termination defects and read-throughs were correlated with 3'R-loops accumulation. Furthermore, we found driver genes with 5'R-loops and RNAPII pausing defects express significantly higher and genes with 3'R-loops and read-through transcription express significantly lower than genes without R-loops. These driver genes are enriched with chromosomal instability, Hippo-Merlin signaling Dysregulation, DNA damage response and TGF-ß pathways, indicating R-loops accumulating at the 5' end of genes play oncogenic roles, whereas at the 3' end of genes play tumor-suppressive roles in tumorigenesis.


Asunto(s)
Estructuras R-Loop , ARN Polimerasa II , Cromatina/genética , Epigénesis Genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
9.
Iran J Basic Med Sci ; 24(12): 1717-1725, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35432812

RESUMEN

Objectives: Vitexin, a natural flavonoid, is commonly found in many foods and traditional herbal medicines and has clear health benefits. However, the role of vitexin in cholestasis is presently unclear. This study investigated whether vitexin mitigated glycochenodeoxycholate (GCDC)-induced hepatocyte injury and further elucidated the underlying mechanisms. Materials and Methods: A cell counting kit-8 (CCK-8) assay was conducted to evaluate cell viability. The mitochondrial membrane potential (MMP, Δψm), reactive oxygen species (ROS) levels, and apoptosis rate of hepatocytes exposed to GCDC were detected by flow cytometry (FCM). We then measured the cytoprotective effects of vitexin against oxidative stress. The molecular signaling pathway was further investigated by using Western blotting and signaling pathway inhibitors. Results: Here, we showed that vitexin increased cell viability and reduced cell apoptosis, necroptosis, and oxidative stress in a dose-dependent manner in GCDC-treated hepatocytes. In addition, by using selective inhibitors, we further confirmed that inhibition of the JAK2/STAT3 pathway by vitexin was mediated by prolonged activation of Sirtuin 6 (SIRT6). Conclusion: Vitexin attenuated GCDC-induced hepatocyte injury via SIRT6 and the JAK2/STAT3 pathways.

10.
Genes (Basel) ; 10(10)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590287

RESUMEN

For cancer diagnosis, many DNA methylation markers have been identified. However, few studies have tried to identify DNA methylation markers to diagnose diverse cancer types simultaneously, i.e., pan-cancers. In this study, we tried to identify DNA methylation markers to differentiate cancer samples from the respective normal samples in pan-cancers. We collected whole genome methylation data of 27 cancer types containing 10,140 cancer samples and 3386 normal samples, and divided all samples into five data sets, including one training data set, one validation data set and three test data sets. We applied machine learning to identify DNA methylation markers, and specifically, we constructed diagnostic prediction models by deep learning. We identified two categories of markers: 12 CpG markers and 13 promoter markers. Three of 12 CpG markers and four of 13 promoter markers locate at cancer-related genes. With the CpG markers, our model achieved an average sensitivity and specificity on test data sets as 92.8% and 90.1%, respectively. For promoter markers, the average sensitivity and specificity on test data sets were 89.8% and 81.1%, respectively. Furthermore, in cell-free DNA methylation data of 163 prostate cancer samples, the CpG markers achieved the sensitivity as 100%, and the promoter markers achieved 92%. For both marker types, the specificity of normal whole blood was 100%. To conclude, we identified methylation markers to diagnose pan-cancers, which might be applied to liquid biopsy of cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias/clasificación , Neoplasias/genética , Islas de CpG/genética , Metilación de ADN/genética , Aprendizaje Profundo , Epigénesis Genética/genética , Predicción , Marcadores Genéticos , Pruebas Genéticas/métodos , Humanos , Aprendizaje Automático , Regiones Promotoras Genéticas , Sensibilidad y Especificidad
11.
Genes (Basel) ; 10(10)2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615113

RESUMEN

Whole-genome bisulfite sequencing generates a comprehensive profiling of the gene methylation levels, but is limited by a high cost. Recent studies have partitioned the genes into landmark genes and target genes and suggested that the landmark gene expression levels capture adequate information to reconstruct the target gene expression levels. This inspired us to propose that the methylation level of the promoters in landmark genes might be adequate to reconstruct the promoter methylation level of target genes, which would eventually reduce the cost of promoter methylation profiling. Here, we propose a deep learning model called Deep-Gene Promoter Methylation (D-GPM) to predict the whole-genome promoter methylation level based on the promoter methylation profile of the landmark genes from The Cancer Genome Atlas (TCGA). D-GPM-15%-7000 × 5, the optimal architecture of D-GPM, acquires the least overall mean absolute error (MAE) and the highest overall Pearson correlation coefficient (PCC), with values of 0.0329 and 0.8186, respectively, when testing data. Additionally, the D-GPM outperforms the regression tree (RT), linear regression (LR), and the support vector machine (SVM) in 95.66%, 92.65%, and 85.49% of the target genes by virtue of its relatively lower MAE and in 98.25%, 91.00%, and 81.56% of the target genes based on its relatively higher PCC, respectively. More importantly, the D-GPM predominates in predicting 79.86% and 78.34% of the target genes according to the model distribution of the least MAE and the highest PCC, respectively.


Asunto(s)
Biología Computacional/métodos , Metilación de ADN , Aprendizaje Profundo , Regiones Promotoras Genéticas , Islas de CpG/genética , Expresión Génica , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Humanos , Modelos Lineales , Aprendizaje Automático , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA