Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38541388

RESUMEN

Currently, 1060 aluminum alloy is widely applied in the electronics industry, construction, the aerospace field, traffic engineering, decorations, and the consumer goods market for its good chemical, physical, and mechanical properties. In general, excellent processing property is necessary and important for the manufacturing of complicated panels. In this paper, a special 2D ultrasonic vibration incremental forming method is designed to improve its plasticity and mechanical properties. Three kind of processing methods, including traditional single-point incremental forming, longitudinal ultrasonic vibration incremental forming, and 2D ultrasonic vibration incremental forming, are used for the flexible manufacturing of cones and cylindrical cups of 1060 aluminum alloy sheet. Then, micro-hardness tests, residual stress tests, and scanning electron microscopy tests are carried out to probe the changes in micro-structure and mechanical properties and to analyze the effects of different types of ultrasonic vibration on the plasticity and fracture characteristic of 1060 aluminum alloy. It is proven that 2D ultrasonic vibration facilitates the improvement of plasticity and surface qualities of 1060 aluminum alloy better than the other two processing methods. Therefore, the novel 2D ultrasonic vibration incremental forming process possesses substantial application value for the flexible and rapid manufacturing of complicated thin-walled component of aluminum alloy.

2.
Dalton Trans ; 52(35): 12526-12533, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37608690

RESUMEN

Sunlight-like full-spectrum phosphor-converted light-emitting diodes (pc-LEDs) require near-infrared (NIR) emission bands to fill the spectrum gap and consequently propel their widespread applications. Although fluoride NIR phosphors have been increasingly investigated, balancing high quantum efficiency (QE), high thermal stability, and wideband NIR emission to obtain excellent overall performance in a single system is still a challenge for Cr3+-doped fluoride NIR phosphor and is significant for direct utilization. Herein, a high-efficiency and thermally stable broadband NIR emission was realized in a novel LiSrGaF6:Cr3+ fluoride phosphor benefitting from a relatively weak crystal field and electron-phonon coupling effect. Upon blue light excitation, the ultra-broad NIR luminescence ranging from 650 to 1150 nm can be achieved with an FWHM of 149 nm peaking at ∼813 nm. Furthermore, this system possesses a high QE of up to 76.88% and its emission intensity at 423 K still maintains 61.62% of its initial intensity at room temperature. An NIR output power of 42.82 mW and photoelectric conversion efficiency of 14.27% of NIR pc-LED devices have also been presented based on this NIR phosphor, demonstrating its possible application in compact nonvisible light sources. In addition, a highly continuous sunlight-like vis-NIR pc-LED was further constructed by employing a blue chip with commercial cyan (BaSi2O2N2:Eu2+), yellow (Y3Al5O12:Ce3+), red (CaAlSiN3:Eu2+), and this LiSrGaF6:Cr3+ NIR phosphor. The as-obtained pc-LED exhibits an ultra-broad spectrum ranging from 400 nm to 1000 nm, exhibiting a higher color reproduction with a color rendering index (CRI) of 95.1 and luminous efficiency (LE) of 50.22 lm W-1. These results indicate that LiSrGaF6:Cr3+ phosphor can be a promising NIR phosphor candidate for high-quality sunlight-like full-spectrum lighting and infrared night vision technology.

3.
Biol Open ; 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32229486

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is an intractable esophageal cancer caused by smoking, alcohol consumption and nutritional deficiencies. Recently, long non-coding RNA SET-binding factor 2 antisense RNA 1 (SBF2-AS1) was validated as an oncogene in multiple cancers. However, the mechanism of SBF2-AS1 in ESCC progression is poorly understood. In the present research, we found that the expression of SBF2-AS1 and PFN2 was up-regulated, while miR-494 was down-regulated in ESCC tumors and cells using quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay and transwell assay demonstrated that silencing of SBF2-AS1 suppressed proliferation, migration and invasion. Moreover, western blot showed that SBF2-AS1 deletion also inhibited epithelial to mesenchymal transition (EMT) by detecting MMP9, Vimentin and E-cadherin protein expression. We confirmed that miR-494 was a target of SBF2-AS1 by luciferase reporter system, RIP and RNA pull-down assay. In addition, miR-494 inhibitor reversed the repression induced by SBF2-AS1 silencing on ESCC cell proliferation, migration, invasion and EMT. Furthermore, PFN2 was negatively regulated by miR-494. Besides, restoration of PFN2 inversed the inhibition effects on cell proliferation, migration, invasion and EMT induced by SBF2-AS1 silencing in ESCC. In conclusion, SBF2-AS1 contributed to cell proliferation, migration, invasion and EMT in ESCC by enhancing PFN2 expression via sponging miR-494, providing promising biomarkers for ESCC diagnosis and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...