Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(7): 173, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937300

RESUMEN

KEY MESSAGE: Genetic editing of grain size genes quickly improves three-line hybrid rice parents to increase the appearance quality and yield of hybrid rice. Grain size affects rice yield and quality. In this study, we used CRISPR/Cas9 to edit the grain size gene GW8 in the maintainer line WaitaiB (WTB) and restorer line Guanghui998 (GH998). The new slender sterile line WTEA (gw8) was obtained in the BC2F1 generation by transferring the grain mutation of the maintainer plant to the corresponding sterile line WantaiA (WTA, GW8) in the T1 generation. Two slender restorer lines, GH998E1 (gw8(II)) and GH998E2 (gw8(I)), were obtained in T1 generation. In the early stage, new sterile and restorer lines in grain mutations were created by targeted editing of GS3, TGW3, and GW8 genes. These parental lines were mated to detect the impact of grain-type mutations on hybrid rice yield and quality. Mutations in gs3, gw8, and tgw3 had a minimal impact on agronomic traits except the grain size and thousand-grain weight. The decrease in grain width in the combination mainly came from gw8/gw8, gs3/gs3 increased the grain length, gs3/gs3-gw8/gw8 had a more significant effect on the grain length, and gs3/gs3-gw8/gw8(I) contributed more to grain length than gs3/gs3-gw8/gw8(II). The heterozygous TGW3/tgw3 may not significantly increase grain length. Electron microscopy revealed that the low-chalky slender-grain variety had a cylindrical grain shape, a uniform distribution of endosperm cells, and tightly arranged starch grains. Quantitative fluorescence analysis of endospermdevelopment-related genes showed that the combination of slender grain hybrid rice caused by gs3 and gw8 mutations promoted endosperm development and improved appearance quality. An appropriate grain size mutation resulted in hybrid rice varieties with high yield and quality.


Asunto(s)
Sistemas CRISPR-Cas , Grano Comestible , Edición Génica , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Edición Génica/métodos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Genes de Plantas , Fenotipo , Fitomejoramiento/métodos , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
2.
Theor Appl Genet ; 137(7): 150, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847846

RESUMEN

Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.


Asunto(s)
Grano Comestible , Oryza , Proteínas de Plantas , Semillas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/enzimología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Fenotipo , Regulación de la Expresión Génica de las Plantas , Clonación Molecular , Mapeo Cromosómico , Haplotipos , Pared Celular/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Genes de Plantas
3.
Rice (N Y) ; 17(1): 39, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874692

RESUMEN

Improving rice quality remains a crucial breeding objective, second only to enhancing yield, yet progress in quality improvement lags behind yield. The high temperature and ripening conditions in Southern China often result in poor rice quality, impacting hybrid rice production and utilization. Therefore, to address this challenge, analyzing the molecular basis of high-quality traits is essential for molecular design breeding of high-quality hybrid rice varieties. In this study, we investigated the molecular basis of grain shape, amylose content, gel consistency, gelatinization temperature, and aroma, which influence rice quality. We discovered that quality related alleles gs3, GW7TFA, gw8, chalk5, Wxb, ALKTT, and fgr can enhance rice quality when applied in breeding programs. Polymerization of gs3, GW7TFA, gw8, and chalk5 genes improves rice appearance quality. The gs3 and GW7TFA allele polymerization increasing the grain's length-width ratio, adding the aggregation of gw8 allele can further reducing grain width. The chalk5 gene regulates low chalkiness, but low correlation to chalkiness was exhibited with grain widths below 2.0 mm, with minimal differences between Chalk5 and chalk5 alleles. Enhancing rice cooking and eating quality is achieved through Wxb and ALKTT gene polymerization, while introducing the fgr(E7) gene significantly improved rice aroma. Using molecular marker-assisted technology, we aggregated these genes to develop a batch of indica hybrid rice parents with improved rice quality are obtained. Cross-combining these enhanced parents can generate new, high-quality hybrid rice varieties suitable for cultivation in Southern China. Therefore, our findings contribute to a molecular breeding model for grain quality improvement in high-quality indica hybrid rice. This study, along with others, highlights the potential of molecular design breeding for enhancing complex traits, particularly rice grain quality.

4.
Genes (Basel) ; 15(5)2024 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-38790274

RESUMEN

Rice is one of the most important staple crops in the world; therefore, the improvement of rice holds great significance for enhancing agricultural production and addressing food security challenges. Although there have been numerous studies on the role of single-nucleotide polymorphisms (SNPs) in rice improvement with the development of next-generation sequencing technologies, research on the role of presence/absence variations (PAVs) in the improvement of rice is limited. In particular, there is a scarcity of studies exploring the traits and genes that may be affected by PAVs in rice. Here, we extracted PAVs utilizing resequencing data from 148 improved rice varieties distributed in Asia. We detected a total of 33,220 PAVs and found that the number of variations decreased gradually as the length of the PAVs increased. The number of PAVs was the highest on chromosome 1. Furthermore, we identified a 6 Mb hotspot region on chromosome 11 containing 1091 PAVs in which there were 29 genes related to defense responses. By conducting a genome-wide association study (GWAS) using PAV variation data and phenotypic data for five traits (flowering time, plant height, flag leaf length, flag leaf width, and panicle number) across all materials, we identified 186 significantly associated PAVs involving 20 cloned genes. A haplotype analysis and expression analysis of candidate genes revealed that important genes might be affected by PAVs, such as the flowering time gene OsSFL1 and the flag leaf width gene NAL1. Our work investigated the pattern in PAVs and explored important PAV key functional genes associated with agronomic traits. Consequently, these results provide potential and exploitable genetic resources for rice breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Polimorfismo de Nucleótido Simple , Oryza/genética , Oryza/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo/métodos , Sitios de Carácter Cuantitativo , Fitomejoramiento/métodos , Fenotipo , Haplotipos , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
5.
Genomics ; 115(6): 110745, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37977332

RESUMEN

Grain qualities including milling quality, appearance quality, eating and cooking quality, and nutritional quality are important indicators in rice breeding. Significant achievements in genetic improvement of rice quality have been made. In this study, we analyzed the variation patterns of 16 traits in 1570 rice varieties and found significant improvements in appearance quality and eating and cooking quality, particularly in hybrid rice. Through genome-wide association study and allelic functional nucleotide polymorphisms analysis of quality trait genes, we found that ALK, FGR1, FLO7, GL7/GW7, GLW7, GS2, GS3, ONAC129, OsGRF8, POW1, WCR1, and Wx were associated with the genetic improvement of rice quality traits in Southern China. Allelic functional nucleotide polymorphisms analysis of 13 important rice quality genes, including fragrance gene fgr, were performed using the polymerase chain reaction amplification refractory mutation system technology. The results showed that Gui516, Gui569, Gui721, Ryousi, Rsimiao, Rbasi, and Yuehui9802 possessed multiple superior alleles. This study elucidates the phenotypic changes and molecular basis of key quality traits of varieties in Southern China. The findings will provide guidance for genetic improvement of rice quality and the development of new varieties.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Nucleótidos
6.
BMC Plant Biol ; 23(1): 396, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596557

RESUMEN

BACKGROUND: Rice is the second-largest food crop in the world and vulnerable to bacterial leaf streak disease. A thorough comprehension of the genetic foundation of agronomic traits was essential for effective implementation of molecular marker-assisted selection. RESULTS: Our study aimed to evaluate the vulnerability of rice to bacterial leaf streak disease (BLS) induced by the gram-negative bacterium Xanthomonas oryzae pv. oryzicola (Xoc). In order to accomplish this, we first analyzed the population structure of 747 accessions and subsequently assessed their phenotypes 20 days after inoculation with a strain of Xoc, GX01. We conducted genome-wide association studies (GWAS) on a population of 747 rice accessions, consisting of both indica and japonica subpopulations, utilizing phenotypic data on resistance to bacterial leaf streak (RBLS) and sequence data. We identified a total of 20 QTLs associated with RBLS in our analysis. Through the integration of linkage mapping, sequence analysis, haplotype analysis, and transcriptome analysis, we were able to identify five potential candidate genes (OsRBLS1-OsRBLS5) that possess the potential to regulate RBLS in rice. In order to gain a more comprehensive understanding of the genetic mechanism behind resistance to bacterial leaf streak, we conducted tests on these genes in both the indica and japonica subpopulations, ultimately identifying superior haplotypes that suggest the potential utilization of these genes in breeding disease-resistant rice varieties. CONCLUSIONS: The findings of our study broaden our comprehension of the genetic mechanisms underlying RBLS in rice and offer significant insights that can be applied towards genetic improvement and breeding of disease-resistant rice in rapidly evolving environmental conditions.


Asunto(s)
Oryza , Oryza/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Agricultura , Mapeo Cromosómico
7.
Plants (Basel) ; 12(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570947

RESUMEN

Wheat has a large and diverse repertoire of NLRs involved in disease resistance, with over 1500 NLRs detected in some studies. These NLR genes occur as singletons or clusters containing copies of NLRs from different phylogenetic clades. The number of NLRs and cluster size can differ drastically among ecotypes and cultivars. Primarily, duplication has led to the evolution and diversification of NLR genes. Among the various mechanisms, whole genome duplication (WGD) is the most intense and leading cause, contributing to the complex evolutionary history and abundant gene set of hexaploid wheat. Tandem duplication or recombination is another major mechanism of NLR gene expansion in wheat. The diversity and divergence of duplicate NLR genes are responsible for the broad-spectrum resistance of most plant species with limited R genes. Understanding the mechanisms underlying the rapid evolution and diversification of wheat NLR genes will help improve disease resistance in crops. The present review focuses on the diversity and divergence of duplicate NLR genes and their contribution to wheat disease resistance. Moreover, we provide an overview of disease resistance-associated gene duplication and the underlying strategies in wheat.

8.
Proteomics ; 23(18): e2200538, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376803

RESUMEN

Grain size is one of the most important agronomic traits for grain yield determination in rice. To better understand the proteins that are regulated by the grain size regulatory gene OsMKK3, this gene was knocked out using the CRISPR/Cas9 system, and tandem mass tag (TMT) labeling combined with liquid chromatograph-tandem mass spectrometry analysis was performed to study the regulation of proteins in the panicle. Quantitative proteomic screening revealed a total of 106 differentially expressed proteins (DEPs) via comparison of the OsMKK3 mutant line to the wild-type YexiangB, including 15 and 91 up-regulated and down-regulated DEPs, respectively. Pathway analysis revealed that DEPs were enriched in metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and photosynthesis. Strong interactions were detected among seven down-regulated proteins related to photosystem components in the protein-protein interaction network, and photosynthetic rate was decreased in mutant plants. The results of the liquid chromatography-parallel reaction monitoring/mass spectromery analysis and western blot analysis were consistent with the results of the proteomic analysis, and the results of the quantitative reverse transcription polymerase chain reaction analysis revealed that the expression levels of most candidate genes were consistent with protein levels. Overall, OsMKK3 controls grain size by regulating the protein content in cells. Our findings provide new candidate genes that will aid the study of grain size regulatory mechanisms associated with the mitogen-activated protein kinase (MAPK) signaling pathway.


Asunto(s)
Oryza , Oryza/metabolismo , Proteómica/métodos , Sistemas CRISPR-Cas/genética , Grano Comestible/metabolismo , Fotosíntesis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
BMC Plant Biol ; 23(1): 256, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37189032

RESUMEN

BACKGROUND: Heat stress threatens rice yield and quality at flowering stage. In this study, average relative seed setting rate under heat stress (RHSR) and genotypes of 284 varieties were used for a genome-wide association study. RESULTS: We identified eight and six QTLs distributed on chromosomes 1, 3, 4, 5, 7 and 12 in the full population and indica, respectively. qHTT4.2 was detected in both the full population and indica as an overlapping QTL. RHSR was positively correlated with the accumulation of heat-tolerant superior alleles (SA), and indica accession contained at least two heat-tolerant SA with average RHSR greater than 43%, meeting the needs of stable production and heat-tolerant QTLs were offer yield basic for chalkiness degree, amylose content, gel consistency and gelatinization temperature. Chalkiness degree, amylose content, and gelatinization temperature under heat stress increased with accumulation of heat-tolerant SA. Gel consistency under heat stress decreased with polymerization of heat-tolerant SA. The study revealed qHTT4.2 as a stable heat-tolerant QTL that can be used for breeding that was detected in the full population and indica. And the grain quality of qHTT4.2-haplotype1 (Hap1) with chalk5, wx, and alk was better than that of qHTT4.2-Hap1 with CHALK5, WX, and ALK. Twelve putative candidate genes were identified for qHTT4.2 that enhance RHSR based on gene expression data and these genes were validated in two groups. Candidate genes LOC_Os04g52830 and LOC_Os04g52870 were induced by high temperature. CONCLUSIONS: Our findings identify strong heat-tolerant cultivars and heat-tolerant QTLs with great potential value to improve rice tolerance to heat stress, and suggest a strategy for the breeding of yield-balance-quality heat-tolerant crop varieties.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Estudio de Asociación del Genoma Completo , Alelos , Amilosa/metabolismo , Fitomejoramiento , Proteínas Tirosina Quinasas Receptoras/genética
10.
Genes Genomics ; 45(7): 867-885, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37209287

RESUMEN

BACKGROUND: Cold damage stress significantly affects rice growth (germination and seedling) and causes serious losses in yield in temperate and high-altitude areas around the globe. OBJECTIVE: This study aimed to explore the cold tolerance (CT) locus of rice and create new cold-tolerant germplasm. We constructed a chromosome segment substitution line (CSSL) with strong CT and fine mapped quantitative trait loci (QTLs) associated with CT by performing the whole-genome resequencing of CSSL with phenotypes under cold treatment. METHODS: A chromosome CSSL, including 271 lines from a cross between the cold-tolerant wild rice Y11 (Oryza rufipogon Griff.) and the cold-sensitive rice variety GH998, was developed to map QTLs conferring CT at the germination stage. The whole-genome resequencing was performed on CSSL for mapping QTLs of associated with CT at the germination stage. RESULTS: A high-density linkage map of the CSSLs was developed using the whole-genome resequencing of 1484 bins. The QTL analysis using 615,466 single-nucleotide polymorphisms (SNPs) led to the identification of 2 QTLs related to germination rate at low-temperature on chromosome 8 (qCTG-8) and chromosome 11 (qCTG-11). The qCTG-8 and qCTG-11 explained 14.55% and 14.31% of the total phenotypic variation, respectively. We narrowed down qCTG-8 and qCTG-11 to 195.5 and 78.83-kb regions, respectively. The expression patterns of important candidate genes in different tissues, and of RNA-sequencing (RNA-seq) in CSSLs, were identified based on gene sequences in qCTG-8 and qCTG-11 cold-induced expression analysis. LOC_Os08g01120 and LOC_Os08g01390 were identified as candidate genes in qCTG-8, and LOC_Os11g32880 was identified as a candidate gene in qCTG-11. CONCLUSIONS: This study demonstrated a general method that could be used to identify useful loci and genes in wild rice and aid in the future cloning of candidate genes of qCTG-8 and qCTG-11. The CSSLs with strong CT were supported for breeding cold-tolerant rice varieties.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Fenotipo
11.
Plant Biotechnol J ; 21(5): 1044-1057, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36705337

RESUMEN

Tiller number per plant-a cardinal component of ideal plant architecture-affects grain yield potential. Thus, alleles positively affecting tillering must be mined to promote genetic improvement. Here, we report a Tiller Number 1 (TN1) protein harbouring a bromo-adjacent homology domain and RNA recognition motifs, identified through genome-wide association study of tiller numbers. Natural variation in TN1 affects its interaction with TIF1 (TN1 interaction factor 1) to affect DWARF14 expression and negatively regulate tiller number in rice. Further analysis of variations in TN1 among indica genotypes according to geographical distribution revealed that low-tillering varieties with TN1-hapL are concentrated in Southeast Asia and East Asia, whereas high-tillering varieties with TN1-hapH are concentrated in South Asia. Taken together, these results indicate that TN1 is a tillering regulatory factor whose alleles present apparent preferential utilization across geographical regions. Our findings advance the molecular understanding of tiller development.


Asunto(s)
Oryza , Oryza/metabolismo , Estudio de Asociación del Genoma Completo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Grano Comestible
12.
J Proteomics ; 270: 104745, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36220543

RESUMEN

Grain length is one of the most important rice grain appearance components. To better understand the protein regulated by grain length in indica rice, the tandem mass tag (TMT) labeling combined with LC-MS/MS analysis was used for quantitative identification of differentially regulated proteins by comparing six long-grain cultivars (MeiB, LongfengB, YexiangB, FengtianB, WantaiB, and DingxiangB) to the short-grain cultivar BoB, respectively. A total of 6622 proteins were detected for quantitative analysis by comparing protein content of six long-grain cultivars to the short-grain cultivar, and 715 proteins were significantly regulated, consisting of 336 uniquely over-accumulated proteins and 355 uniquely down-accumulated proteins. KEGG pathway analysis revealed that most of accumulated proteins are involved in metabolic pathways, biosynthesis of secondary metabolites and phenylpropanoid biosynthesis. Four down-accumulated proteins maybe involved in the signaling pathways for grain length regulation. LC-PRM/MS quantitative analysis was used to analyze 10 differentially expressed proteins. The results were almost consistent with the TMT quantitative analysis. qRT-PCR analysis results showed that the transcription level was not always parallel to the protein content. This study identified many novel grain length accumulated proteins through the quantitative proteomics approach, providing candidate genes for further study of grain size regulatory mechanisms. SIGNIFICANCE: Rice grain length is one of the most important characteristics influencing appearance and yield. Six long-grain cultivars (MeiB, LongfengB, YexiangB, FengtianB, WantaiB, and DingxiangB obtained in Guangxi province of China from the 2000s to 2020s) and one short-grain cultivar (BoB obtained in Guangxi province of China in 1980s) were used for comparative analyses. Totally, 715 differentially expressed proteins (DEPs) were identified using TMT-base proteomic analysis. The numbers of DEPs increased as the grain length increased. 4 DEPs may be related to rice's signaling pathways for grain size regulation. A total of 85 DEPs regulated in at least four long-grain cultivars compared with the short-grain cultivar BoB, and 7 proteins were over-accumulated, and 3 proteins were down-accumulated in six long-grain cultivars. These findings provide valuable information to better understand the mechanisms of protein regulation by grain length in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Proteómica/métodos , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem , China , Grano Comestible/metabolismo , Transducción de Señal
13.
BMC Plant Biol ; 22(1): 526, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376791

RESUMEN

BACKGROUND: Rice is the world's second largest food crop and accelerated global climate change due to the intensification of human activities has a huge impact on rice. Research on the evolution of different rice ecotypes is essential for enhancing the adaptation of rice to the unpredictable environments. RESULTS: The sequencing data of 868 cultivated and 140 wild rice accessions were used to study the domestication history and signatures of adaptation in the distinct rice ecotypes genome. The different populations had formed distinct rice ecotypes by phylogenetic analyses and were domesticated independently in the two subspecies of rice, especially deepwater and upland rice. The domestication history of distinct rice ecotypes was confirmed and the four predicted admixture events mainly involved gene flow between wild rice and cultivated rice. Importantly, we identified numerous selective sweeps that have occurred during the domestication of different rice ecotypes and one candidate gene (LOC_Os11g21804) for deepwater based on transcriptomic evidence. In addition, many regions of genomic differentiation between the different rice ecotypes were identified. Furthermore, the main reason for the increase in genetic diversity in the ecotypes of xian (indica) rice was the high proportion of alternative allele frequency in new mutations. Genome-wide association analysis revealed 28 QTLs associated with flood tolerance which contained 12 related cloned genes, and 20 candidate genes within 13 deepwater QTLs were identified by transcriptomic and haplotype analyses. CONCLUSIONS: These results enhanced our understanding of domestication history in different rice ecotypes and provided valuable insights for genetic improvement and breeding of rice in the current changing environments.


Asunto(s)
Oryza , Humanos , Oryza/genética , Ecotipo , Estudio de Asociación del Genoma Completo , Filogenia , Inundaciones , Fitomejoramiento , Variación Genética
14.
Breed Sci ; 72(2): 150-168, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36275934

RESUMEN

Low temperature is one of the important environmental factors that affect rice growth and yield. To better understand the japonica rice responses to cold stress, isobaric tags for a relative and absolute quantification (iTRAQ) labeling-based quantitative proteomics approach was used to detected changes in protein levels. Two-week-old seedlings of the cold tolerant rice variety Kongyu131 were treated at 8°C for 24, 48 and 72 h, then the total proteins were extracted from tissues and used for quantitative proteomics analysis. A total of 5082 proteins were detected for quantitative analysis, of which 289 proteins were significantly regulated, consisting of 169 uniquely up-regulated proteins and 125 uniquely down-regulated proteins in cold stress groups relative to the control group. Functional analysis revealed that most of the regulated proteins are involved in photosynthesis, metabolic pathway, biosynthesis of secondary metabolites and carbon metabolism. Western blot analysis showed that protein regulation was consistent with the iTRAQ data. The corresponding genes of 25 regulated proteins were used for quantitative real time PCR analysis, and the results showed that the mRNA level was not always parallel to the corresponding protein level. The importance of our study is that it provides new insights into cold stress responses in rice with respect to proteomics and provides candidate genes for cold-tolerance rice breeding.

15.
Front Genet ; 13: 960007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147492

RESUMEN

Lodging is one of the major abiotic stresses, affecting the total crop yield and quality. The improved lodging resistance and its component traits potentially reduce the yield losses. The section modulus (SM), bending moment at breaking (M), pushing resistance (PR), and coefficient of lodging resistance (cLr) are the key elements to estimate the lodging resistance. Understanding the genetic architecture of lodging resistance-related traits will help to improve the culm strength and overall yield potential. In this study, a natural population of 795 globally diverse genotypes was further divided into two (indica and japonica) subpopulations and was used to evaluate the lodging resistance and culm strength-related traits. Significant diversity was observed among the studied traits. We carried out the genome-wide association evaluation of four lodging resistance traits with 3.3 million deep resolution single-nucleotide polymorphic (SNP) markers. The general linear model (GLM) and compressed mixed linear model (MLM) were used for the whole population and two subpopulation genome-wide association studies (GWAS), and a 1000-time permutation test was performed to remove the false positives. A total of 375 nonredundant QTLs were observed for four culm strength traits on 12 chromosomes of the rice genome. Then, 33 pleiotropic loci governing more than one trait were mined. A total of 4031 annotated genes were detected within the candidate genomic region of 33 pleiotropic loci. The functional annotations and metabolic pathway enrichment analysis showed cellular localization and transmembrane transport as the top gene ontological terms. The in silico and in vitro expression analyses were conducted to validate the three candidate genes in a pleiotropic QTL on chromosome 7. It validated OsFBA2 as a candidate gene to contribute to lodging resistance in rice. The haplotype analysis for the candidate gene revealed a significant functional variation in the promoter region. Validation and introgression of alleles that are beneficial to induce culm strength may be used in rice breeding for lodging resistance.

16.
Front Genet ; 13: 887217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783267

RESUMEN

The NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) gene family plays a critical role in plant development. However, our understanding of the mechanisms of how NB-ARC genes regulate plant development in the plant panicle is still limited. Here, we subjected 258 NB-ARC genes in rice to genome-wide analysis to characterize their structure, function, and expression patterns. The NB-ARC genes were classified into three major groups, and group II included nine subgroups. Evolutionary analysis of NB-ARC genes in a dicotyledon plant (Arabidopsis thaliana) and two monocotyledonous plants (Oryza sativa L. and Triticum aestivum) indicated that homologous genome segments were conserved in monocotyledons and subjected to weak positive selective pressure during evolution. Dispersed and proximal replication events were detected. Expression analysis showed expression of most NB-ARC genes in roots, panicles, and leaves, and regulation at the panicle development stage in rice Ce253. The GNP12 gene encodes RGH1A protein, which regulates rice yield according to panicle length, grain number of panicle, and grain length, with eight major haplotypes. Most members of NB-ARC protein family are predicted to contain P-loop conserved domains and localize on the membrane. The results of this study will provide insight into the characteristics and evolution of NB-ARC family and suggest that GNP12 positively regulates panicle development.

17.
BMC Genom Data ; 23(1): 33, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508973

RESUMEN

BACKGROUND: Glutinous rice as a special endosperm type is consumed as a staple food in East Asian countries by consumers' preference. Genetic studies on glutinous rice could be conducive to improve rice quality and understand its development and evolution. Therefor, we sought to explore more genes related to glutinous by genome wide association study and research the formation history for glutinous. RESULTS: Here, genome-wide association study was performed to explore the associated loci/genes underlying glutinous rice by using 2108 rice accessions. Combining the expression patterns analysis, 127, 81, and 48 candidate genes were identified to be associated with endosperm type in whole rice panel, indica, and japonica sub-populations. There were 32 genes, including three starch synthesis-related genes Wx, SSG6, and OsSSIIa, detected simultaneously in the whole rice panel and subpopulations, playing important role in determining glutinous rice. The combined haplotype analyses revealed that the waxy haplotypes combination of three genes mainly distributed in Southeast Asia (SEA), SEA islands (SER) and East Asia islands (EAR). Through population structure and genetic differentiation, we suggest that waxy haplotypes of the three genes firstly evolved or were directly inherited from wild rice in japonica, and then introgressed into indica in SER, SEA and EAR. CONCLUSIONS: The cloning and natural variation analysis of waxy-related genes are of great significance for the genetic improvement of quality breeding and comprehend the history in glutinous rice. This work provides valuable information for further gene discovery and understanding the evolution and formation for glutinous rice in SEA, SER and EAR.


Asunto(s)
Oryza , Endospermo , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Oryza/genética , Fitomejoramiento
18.
Mol Breed ; 42(4): 22, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37309462

RESUMEN

Grain size is one of the major traits that determine rice grain yield and quality. The GS3 gene is the first major quantitative trait locus (QTL) that was identified in regulating rice grain length and weight. It was reported that the gs3 allele with a mutation in the organ size regulation (OSR) domain of the GS3 protein produced longer grains. In this study, we used the CRISPR/Cas9 gene editing technology to introduce an edited gs3 allele into our indica maintainer line, Mei1B, to enhance its grain yield and quality. Through molecular analysis and sequencing, a homologous edited-gs3 mutant line without any transgene was obtained in the T1 generation and was named Mei2B. A superior male sterile line Mei2A was generated by backcrossing the cytoplasmic male sterile (CMS) line Mei1A with Mei2B. Mei2B had a higher grain quality and yield compared to its wild-type Mei1B. Its grain length increased by 7.9%, its length/width ratio increased from 3.89 to 4.19, TGW increased by 6.7%, and grain yield per plant increased by 14.9%. In addition, genetic improvement of other quality traits including brown rice length (6.83 mm), brown rice grain length/width ratio (3.61), matched the appearance standards set for traditional Simiao (silk seedling) type cultivars. Two restorer lines were outcrossed to both Mei1A and Mei2A to produce hybrid rice. Compared to two hybrids of Mei1A, the hybrids of Mei2A had longer grains, higher length/width ratio, TGW, and yield per plant. In addition, the hybrids of Mei2A showed a better grain appearance including better translucency, a lower chalky rice rate, and degree of chalkiness than the hybrids of Mei1A. These results demonstrated that the introduction of an elite gs3 allele into Mei1A via CRISPR/Cas9 gene editing technology led to significant genetic improvement of the rice grain. The resultant CMS line Mei2A(gs3) displayed much higher grain quality and yield than the original Mei1A. Therefore, our study demonstrated that the targeted genetic improvement via gene editing technology can enhance rice breeding, especially the breeding of three-line hybrid rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01290-z.

19.
Front Plant Sci ; 12: 784037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899812

RESUMEN

Rice (Oryza sativa L.) is an important staple food crop for more than half of the world's population. Enhancing the grain quality and yield of rice to meet growing demand remains a major challenge. Here, we show that OsMKK3 encode a MAP kinase kinase that controls grain size and chalkiness by affecting cell proliferation in spikelet hulls. We showed that OsSPL16, GS5, and GIF1 have a substantial effect on the OsMKK3-regulated grain size pathway. OsMKK3 has experienced strong directional selection in indica and japonica. Wild rice accessions contained four OsMKK3 haplotypes, suggesting that the OsMKK3 haplotypes present in cultivated rice likely originated from different wild rice accessions during rice domestication. OsMKK3-Hap1, gs3, and gw8 were polymerized to enhance the grain length. Polymerization of beneficial alleles, such as OsMKK3-Hap1, gs3, gw8, fgr, alk, chalk5, and wx, also improved the quality of hybrid rice. Overall, the results indicated that beneficial OsMKK3 alleles could be used for genomic-assisted breeding for rice cultivar improvement and be polymerized with other beneficial alleles.

20.
PeerJ ; 9: e11766, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277156

RESUMEN

The aim of this study was to find a material suited for the prevention of evaporative water loss and salt accumulation in coastal saline soils. One-dimensional vertical water infiltration and phreatic evaporation experiments were conducted using a silty loam saline soil. A 3-cm-thick layer of corn straw, biochar, and peat was buried at the soil depth of 20 cm, and a 6-cm-thick layer of peat was also buried at the same soil depth for comparison. The presence of the biochar layer increased the upper soil water content, but its ability to inhibit salt accumulation was poor, leading to a high salt concentration in the surface soil. The 3-cm-thick straw and 6-cm-thick peat layers were most effective to inhibit salt accumulation, which reduced the upper soil salt concentration by 96% and 93%, respectively. However, the straw layer strongly inhibited phreatic evaporation and resulted in low water content in the upper soil layer. Compared with the straw layer, the peat layer increased the upper soil water content. Thus, burying a 6-cm-thick peat layer in the coastal saline soil is the optimal strategy to retain water in the upper soil layer and intercept salt in the deeper soil layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...