RESUMEN
BACKGROUND: Lymph node metastasis (LNM) from Breast cancer (BC) is commonly seen in BC progression. Currently, the identification of genes linked with LNM in BC remains in mystery. METHODS: Genes related to BC LNM were screened, and a risk model was constructed based on LASSO-Cox analysis. Combined with the Kaplan-Meier curve, the ability of riskscore to distinguish different baseline characteristics was evaluated, and model was verified by the receiver operating characteristic (ROC) curve. The expression levels of prognostic marker genes were analyzed by qRT-PCR and western blot (WB). RESULTS: A higher survival rate and longer survival time in low-risk BC patients. The 1, 3 and 5 year AUC values of the training set were 0.79, 0.74, and 0.73, respectively. Results for the validation set was similar to the training set. The differentially expressed genes between the high- and low-risk groups were significantly enriched in immune pathways. In addition, the low-risk group had higher levels of immune infiltration. qRT-PCR and WB results showed that in BC, CDH10, SMR3A, POU3F2, and FABP7 were down-regulated, and LHX1 was up-regulated. CONCLUSIONS: We built a prognostic model of BC based on LNM-related genes, proffering evaluation for prognosis and precise cure of BC. SIGNIFICANCE: At present, the genes related to lymph node metastasis in BC are still largely unknown and need to be further explored. Searching for potential lymph node metastasis-related genes of BC will provide meaningful biomarkers for BC treatment. Based on TCGA-BRCA data, we established an effective 11-gene prognostic risk model that could predict patient outcomes independently. Our model could classify BC patients and distinguish patients with poor prognosis effectively. Besides, the feature genes we identified might exert a predictive function in immunotherapy. The results of this study provide a new reference for the prognosis and treatment of BC patients with lymph node metastasis.
Asunto(s)
Neoplasias de la Mama , Linfoma , Humanos , Femenino , Neoplasias de la Mama/genética , Metástasis Linfática , Pronóstico , MamaRESUMEN
BACKGROUND: The randomized trials which include ACOSOG Z0011 and IBCSG 23-01 had found that the survival rates were not different in patients with cT1/2N0 and 1-2 sentinel lymph node (SLN)-positive, macro/micrometastases who underwent breast-conserving therapy, and micrometastases who underwent total mastectomy (TM), when axillary lymph node dissection (ALND) was omitted. However, for patients with cT1/2N0 and 1-2 SLN macrometastases who underwent TM; there was still insufficient evidence from clinical studies to support whether ALND can be exempted. This study aimed to investigate the risk factors of non-sentinel lymph node (nSLN) metastasis in breast cancer patients with 1-2 SLN macrometastases undergoing TM. METHODS: The clinicopathological data of 1491 breast cancer patients who underwent TM and SLNB from January 2017 to February 2022 were retrospectively analyzed. Univariate and multivariate analyses were performed to analyze the risk factors for nSLN metastasis. RESULTS: A total of 273 patients with 1-2 SLN macrometastases who underwent TM were enrolled. Postoperative pathological data showed that 35.2% patients had nSLN metastasis. The results of multivariate analysis indicated that tumor size (TS) (P = 0.002; OR: 1.051; 95% CI: 1.019-1.084) and ratio of SLN macrometastases (P = 0.0001; OR: 12.597: 95% CI: 4.302-36.890) were the independent risk factors for nSLN metastasis in breast cancer patients with 1-2 SLN macrometastases that underwent TM. The ROC curve analysis suggested that when TS ≤22 mm and ratio of SLN macrometastases ≤0.33, the incidence of nSLN metastasis could be reduced to 17.1%. CONCLUSIONS: The breast cancer patients with cT1/2N0 stage, undergoing TM and 1-2 SLN macrometastases, when the TS ≤22 mm and macrometastatic SLN does not exceed 1/3 of the total number of detected SLN, the incidence of nSLN metastasis is significantly reduced, but whether ALND can be exempted needs further exploration.
Asunto(s)
Neoplasias de la Mama , Ganglio Linfático Centinela , Humanos , Femenino , Neoplasias de la Mama/patología , Biopsia del Ganglio Linfático Centinela/métodos , Metástasis Linfática/patología , Estudios de Casos y Controles , Mastectomía Simple , Estudios Retrospectivos , Micrometástasis de Neoplasia/patología , Mastectomía , Axila/patología , Ganglio Linfático Centinela/cirugía , Ganglio Linfático Centinela/patología , Escisión del Ganglio Linfático/métodos , Factores de Riesgo , Ganglios Linfáticos/cirugía , Ganglios Linfáticos/patologíaRESUMEN
[This retracts the article DOI: 10.3892/etm.2017.4590.].
RESUMEN
Breast cancer (BC) is a common malignant tumor in women, and a considerable number of studies show that aberrant expression of miRNA is correlated with BC development. By analyzing TCGA-BRCA database through bioinformatics method, this study disclosed that miR-337-3p was significantly low in BC tissue and might be a cancer inhibitor in BC. To explore the effect and potential mechanism of miR-337-3p in BC, qRT-PCR was used in this study to indicate that the expression of miR-337-3p was downregulated in BC cells. Then, the effects of miR-337-3p on BC cells were detected by western blot, Cell Counting Kit-8 (CCK-8), wound healing and Transwell assays. After upregulating miR-337-3p expression, the cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) of BC cells were markedly inhibited while cell apoptosis remarkably increased. Besides, it was predicted and identified by bioinformatics analysis and dual-luciferase assay that ESRP1 was a target gene of miR-337-3p. Finally, the progression and EMT of BC cells were promoted after upregulating ESRP1 expression level. However, upregulating miR-337-3p as well as ESRP1 reduced the promotion on the malignant phenotype of BC cells. This result revealed that miR-337-3p could inhibit ESRP1 expression to perform its biological functions. In conclusion, it was illustrated in this study that miR-337-3p is a tumor-inhibitor of BC and plays its regulatory role via its downstream gene ESRP1.
Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Proteínas de Neoplasias/biosíntesis , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/biosíntesis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , MicroARNs/genética , Invasividad Neoplásica , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Proteínas de Unión al ARN/genéticaRESUMEN
MicroRNAs (miRs), which are a class of small non-coding RNAs, are key regulators of gene expression via induction of translational repression or mRNA degradation. However, the molecular mechanism of miR-22 underlying the malignant progression of breast cancer, remains to be elucidated. The present study aimed to explore the regulatory mechanism of miR-22 in breast cancer cell growth and metastasis. Reverse transcription-quantitative polymerase chain reaction data revealed that miR-22 was significantly downregulated in breast cancer tissues, compared with adjacent non-tumor tissues. Furthermore, the miR-22 levels were further decreased in stage III-IV, compared with stage I-II breast cancer. In addition, low miR-22 levels were significantly associated with the poor differentiation, metastasis and advanced clinical stages of breast cancer. Sirtuin1 (SIRT1) was demonstrated to act as a direct target gene of miR-22 and its protein expression negatively regulated by miR-22 in the MCF-7 breast cancer cell line. Furthermore, SIRT1 expression levels were significantly upregulated in breast cancer tissues, compared with adjacent non-tumor tissues. SIRT1 levels were observed to be increased in stage III-IV when compared with stage I-II breast cancer. miR-22 overexpression decreased the proliferation, migration and invasion of MCF-7 cells, whereas overexpression of SIRT1 eliminated the suppressive effects of the miR-22 overexpression on the malignant phenotype of MCF-7 cells. The results of the present study therefore suggested that miR-22 demonstrated suppressive effects on breast cancer growth and metastasis via targeting SIRT1, and thus the miR-22/SIRT1 axis may be used as a novel and potential therapeutic target for breast cancer in the future.