Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Cell Death Differ ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223264

RESUMEN

Impaired callus remodeling significantly contributes to the delayed healing of osteoporotic fractures; however, the underlying mechanisms remain unclear. Sensory neuronal signaling plays a crucial role in bone repair. In this study, we aimed to investigate the pathological mechanisms hindering bone remodeling in osteoporotic fractures, particularly focusing on the role of sensory neuronal signaling. We demonstrate that in ovariectomized (OVX) mice, the loss of CGRP+TrkA+ sensory neuronal signaling during callus remodeling correlates with increased Cx3cr1+iOCs expression within the bone callus. Conditional knockout of Cx3cr1+iOCs restored CGRP+TrkA+ sensory neuronal, enabling normal callus remodeling progression. Mechanistically, we further demonstrate that Cx3cr1+iOCs secrete Sema3A in the osteoporotic fracture repair microenvironment, inhibiting CGRP+TrkA+ sensory neurons' axonal regeneration and suppressing nerve-bone signaling exchange, thus hindering bone remodeling. Lastly, in human samples, we observed an association between the loss of CGRP+TrkA+ sensory neuronal signaling and increased expression of Cx3cr1+iOCs. In conclusion, enhancing CGRP+TrkA+ sensory nerve signaling by inhibiting Cx3cr1+iOCs activity presents a potential strategy for treating delayed healing in osteoporotic fractures. Inhibition of inflammatory osteoclasts enhances CGRP+TrkA+ signaling and accelerates callus remodeling in osteoporotic fractures.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39235611

RESUMEN

BACKGROUND: Osteosarcoma is the most common malignant bone tumor in children and adolescents. Conventional chemotherapy remains unsatisfactory due to drug toxicity and resistance issues. Therefore, there is an urgent need to develop more effective treatments for advanced osteosarcoma. In the current study, we focused on evaluating the anticancer efficacy of avermectin B1, a novel avermectin analog, against osteosarcoma cells. METHODS: The half-inhibitory concentration of avermectin B1 was calculated in three osteosarcoma cell lines. Then, functional experiments were conducted to evaluate the effects of avermectin B1 on cell proliferation, the cell cycle, apoptosis and autophagy. Moreover, the AMPK/ULK1 signaling pathway was detected by Western blot assay. Finally, the in vivo effect of avermectin B1 on tumor growth and metastasis was investigated using the xenograft mouse model. To examine the role of the AMPK/ULK1 pathway, an AMPK-specific inhibitor (dorsomorphin) was used in combination with avermectin B1. RESULTS: Avermectin B1 inhibited the proliferation of osteosarcoma cells in a dose-dependent manner based on CCK8 and colony formation assays. Then, it was found to inhibit migration and invasion by wound healing assay and cell migration and invasion assay. In addition, avermectin B1 induced osteosarcoma cell apoptosis and autophagy. In vivo, avermectin B1 effectively inhibited osteosarcoma cell growth and pulmonary metastasis. Mechanistically, avermectin B1 activated the AMPK/ULK1 pathway to exert antitumor activity in vitro and in vivo. Dorsomorphin significantly attenuated the Avermectin B1-induced antitumor activities. CONCLUSION: Our study suggests that avermectin B1 is a potential agent to treat osteosarcoma cells through the AMPK/ULK1 signaling pathway.

4.
Adv Sci (Weinh) ; : e2403854, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120051

RESUMEN

Compressed ultrafast photography (CUP) can capture irreversible or difficult-to-repeat dynamic scenes at the imaging speed of more than one billion frames per second, which is obtained by compressive sensing-based image reconstruction from a compressed 2D image through the discretization of detector pixels. However, an excessively high data compression ratio in CUP severely degrades the image reconstruction quality, thereby restricting its ability to observe ultrafast dynamic scenes with complex spatial structures. To address this issue, a discrete illumination-based CUP (DI-CUP) with high fidelity is reported. In DI-CUP, the dynamic scenes are loaded into an ultrashort laser pulse train with controllable sub-pulse number and time interval, thus the data compression ratio, as well as the overlap between adjacent frames, is greatly decreased and flexibly controlled through the discretization of dynamic scenes based on laser pulse train illumination, and high-fidelity image reconstruction can be realized within the same observation time window. Furthermore, the superior performance of DI-CUP is verified by observing femtosecond laser-induced ablation dynamics and plasma channel evolution, which are hardly resolved in the spatial structures using conventional CUP. It is anticipated that DI-CUP will be widely and dependably used in the real-time observations of various ultrafast dynamics.

5.
Adv Sci (Weinh) ; : e2400486, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978328

RESUMEN

The risk for suffering immune checkpoint inhibitors (ICIs)-associated myocarditis increases in patients with pre-existing conditions and the mechanisms remain to be clarified. Spatial transcriptomics, single-cell RNA sequencing, and flow cytometry are used to decipher how anti-cytotoxic T lymphocyte antigen-4 m2a antibody (anti-CTLA-4 m2a antibody) aggravated cardiac injury in experimental autoimmune myocarditis (EAM) mice. It is found that anti-CTLA-4 m2a antibody increases cardiac fibroblast-derived C-X-C motif chemokine ligand 1 (Cxcl1), which promots neutrophil infiltration to the myocarditic zones (MZs) of EAM mice via enhanced Cxcl1-Cxcr2 chemotaxis. It is identified that the C-C motif chemokine ligand 5 (Ccl5)-neutrophil subpopulation is responsible for high activity of cytokine production, adaptive immune response, NF-κB signaling, and cellular response to interferon-gamma and that the Ccl5-neutrophil subpopulation and its-associated proinflammatory cytokines/chemokines promoted macrophage (Mφ) polarization to M1 Mφ. These altered infiltrating landscape and phenotypic switch of immune cells, and proinflammatory factors synergistically aggravated anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. Neutralizing neutrophils, Cxcl1, and applying Cxcr2 antagonist dramatically alleviates anti-CTLA-4 m2a antibody-induced leukocyte infiltration, cardiac fibrosis, and dysfunction. It is suggested that Ccl5-neutrophil subpopulation plays a critical role in aggravating anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. This data may provide a strategic rational for preventing/curing ICIs-associated myocarditis.

6.
Front Neurol ; 15: 1378017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978810

RESUMEN

This study investigated the etiology, clinical features, and prognosis of patients diagnosed with bilateral sudden sensorineural hearing loss (BSSNHL). The clinical data of 100 patients with bilateral sudden hearing loss as a chief complaint treated at Xiangya Second Hospital of Central South University between January 2010 and August 2022, including clinical characteristics, audiometric data, and prognosis, were retrospectively analyzed. These 100 cases accounted for 8.09% (100/1235) of all patients admitted for sudden sensorineural hearing loss (SSNHL) during the same period. Of these, 71 were simultaneous cases and 29 were sequential cases of BSSNHL. Among the 200 ears analyzed in this study, 13, 36, 57, and 94 had mild, moderate, severe, and profound sensorineural hearing loss, respectively. The overall effective rate after comprehensive treatment was 32%, with significant differences in efficacy and prognosis among different degrees of hearing loss (p < 0.05). Comorbidities of hypertension (24 cases), diabetes (14 cases), and coronary heart disease (9 cases) significantly impacted therapeutic efficacy and prognosis in patients with BSSNHL (p < 0.05). Compared to unilateral SSNHL, BSSNHL exhibits distinctive characteristics.

7.
J Bone Oncol ; 47: 100618, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39050186

RESUMEN

Osteosarcoma is the most common primary malignant bone tumor in adolescents. While treatments for osteosarcoma have improved, the overall survival has not changed for three decades, and thus, new targets for therapeutic development are needed. Recently, glucocorticoids have been reported to have antitumor effects. Mometasone furoate (MF), a synthetic glucocorticoid, is of great value in clinical application, but there are few reports on its antitumor effect. Here, we verified the effect of MF on osteosarcoma in vitro and in vivo. In vitro, cell proliferation, cell cycle progression, apoptosis and cell metastasis were detected using Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, wound-healing and transwell assays, respectively. In vivo, we generated a xenograft mouse model. To examine the potential role of the AMPK pathway, an AMPK-specific inhibitor (dorsomorphin) was used. The expression levels of factors related to the cell cycle, apoptosis and activation of the AMPK/mTOR pathway were assessed by immunohistochemistry and Western blotting. MF inhibited proliferation and metastasis and induced S phase arrest and apoptosis in osteosarcoma cells in a dose-dependent manner. In vivo, MF effectively inhibited osteosarcoma cell growth and pulmonary metastasis; however, it had no negative effect on the internal organs. Additionally, MF could activate the AMPK/mTOR pathway in osteosarcoma. Dorsomorphin significantly attenuated MF-induced antitumor activities. In summary, MF can inhibit osteosarcoma proliferation and metastasis and promote osteosarcoma cell apoptosis through the AMPK/mTOR signaling pathway in vitro and in vivo, which can provide a new rationale for subsequent academic and clinical research on osteosarcoma treatment.

8.
Ecotoxicol Environ Saf ; 283: 116798, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39083874

RESUMEN

Propylparaben (PrPB) is a known endocrine disrupting chemicals that is widely applied as preservative in pharmaceuticals, food and cosmetics. PrPB has been detected in human urine samples and human serum and has been proven to cause functional decline in reproduction. However, the direct effects of PrPB on mammalian oocyte are still unknown. Here, we demonstrationed that exposure to PrPB disturbed mouse oocyte maturation in vitro, causing meiotic resumption arrest and first polar body extrusion failure. Our results indicated that 600 µM PrPB reduced the rate of oocyte germinal vesicle breakdown (GVBD). Further research revealed that PrPB caused mitochondrial dysfunction and oxidative stress, which led to oocyte DNA damage. This damage further disturbed the activity of the maturation promoting factor (MPF) complex Cyclin B1/ Cyclin-dependent kinase 1 (CDK1) and induced G2/M arrest. Subsequent experiments revealed that PrPB exposure can lead to spindle morphology disorder and chromosome misalignment due to unstable microtubules. In addition, PrPB adversely affected the attachment between microtubules and kinetochore, resulting in persistent activation of BUB3 amd BubR1, which are two spindle-assembly checkpoint (SAC) protein. Taken together, our studies indicated that PrPB damaged mouse oocyte maturation via disrupting MPF related G2/M transition and SAC depended metaphase-anaphase transition.


Asunto(s)
Ciclo Celular , Exposición a Riesgos Ambientales , Oocitos , Parabenos , Parabenos/toxicidad , Ciclo Celular/efectos de los fármacos , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Femenino , Animales , Ratones , Disruptores Endocrinos/toxicidad , Ratones Endogámicos ICR , Cuerpos Polares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Huso Acromático/efectos de los fármacos , Cromosomas/efectos de los fármacos , Microtúbulos/efectos de los fármacos
9.
Int J Biol Macromol ; 274(Pt 1): 133372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914387

RESUMEN

Due to persistent inflammation and oxidative stress reactions, achieving drug absorption in diabetic wounds is challenging. To overcome this problem, our article presents a composite hydrogel, GelMA-GA/DMOG@GDNP, which consists of gelatin methacryloyl (GelMA) treated with gallic acid (GA) and encapsulating ginseng-derived nanoparticles (GDNPs) loaded with dimethyloxallyl glycine (DMOG). The composite hydrogel demonstrates excellent biocompatibility. In laboratory settings, the hydrogel inhibits the production of nitric oxide synthase 2 (iNOS) in mouse immune cells (RAW264.7 cells), enhances the growth and migration of mouse connective tissue cells (L929 cells) and human endothelial cells (HUVECs), and promotes tube formation in HUVECs. In a rat model of type 1 diabetes-induced wounds, the composite hydrogel attenuates inflammatory reactions, facilitates the formation of fibres and blood vessels, accelerates wound healing, and elucidates specific pathway mechanisms through transcriptome sequencing. Therefore, the GelMA-GA/DMOG@GDNP hydrogel can serve as a safe and efficient wound dressing to regulate the inflammatory response, promote collagen fiber and blood vessel formation, and accelerate wound healing. These findings suggest that utilizing this multifunctional engineered nanoparticle-loaded hydrogel in a clinical setting may be a promising strategy for diabetic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Ácido Gálico , Gelatina , Nanopartículas , Panax , Cicatrización de Heridas , Animales , Gelatina/química , Cicatrización de Heridas/efectos de los fármacos , Ácido Gálico/química , Ácido Gálico/farmacología , Ratas , Nanopartículas/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Ratones , Panax/química , Células RAW 264.7 , Masculino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Metacrilatos/química , Metacrilatos/farmacología , Ratas Sprague-Dawley
10.
Acta Pharmacol Sin ; 45(7): 1425-1437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839936

RESUMEN

Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.


Asunto(s)
Fibrosis , Ratones Endogámicos C57BL , Infarto del Miocardio , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Masculino , Proteínas Señalizadoras YAP/metabolismo , Fibroblastos/metabolismo , Citidina/análogos & derivados , Citidina/farmacología , Ratones Noqueados , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Acetiltransferasa E N-Terminal/metabolismo , Vía de Señalización Hippo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Células Cultivadas , Transducción de Señal , Acetiltransferasas N-Terminal/metabolismo , Miocardio/patología , Miocardio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
11.
Phys Rev Lett ; 132(17): 173801, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728719

RESUMEN

Ultrafast imaging can capture the dynamic scenes with a nanosecond and even femtosecond temporal resolution. Complementarily, phase imaging can provide the morphology, refractive index, or thickness information that intensity imaging cannot represent. Therefore, it is important to realize the simultaneous ultrafast intensity and phase imaging for achieving as much information as possible in the detection of ultrafast dynamic scenes. Here, we report a single-shot intensity- and phase-sensitive compressive sensing-based coherent modulation ultrafast imaging technique, shortened as CS-CMUI, which integrates coherent modulation imaging, compressive imaging, and streak imaging. We theoretically demonstrate through numerical simulations that CS-CMUI can obtain both the intensity and phase information of the dynamic scenes with ultrahigh fidelity. Furthermore, we experimentally build a CS-CMUI system and successfully measure the intensity and phase evolution of a multimode Q-switched laser pulse and the dynamical behavior of laser ablation on an indium tin oxide thin film. It is anticipated that CS-CMUI enables a profound comprehension of ultrafast phenomena and promotes the advancement of various practical applications, which will have substantial impact on fundamental and applied sciences.

12.
Updates Surg ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728004

RESUMEN

The aim was to assess conditional survival for colon mucinous adenocarcinoma (MAC) patients, and to construct nomograms to predict conditional survival probability. Survival analysis was done using conditional survival, which was defined as the probability of surviving additional y years for patients who have survived for x years. The mathematical definition was express as: CS (y|x) = S (x + y)/S (x). Cox regression analyses were used to identify prognostic factors. A nomogram is constructed to predict conditional disease-free survival (DFS) and overall survival (OS) probability according to years that already survive. A total of 179 colon MAC patients were included. The 5-year DFS was 67% after surgery, and the 5-year survival probability of patients, who already survived 1, 2, 3, and 4 years were 75%, 87%, 95%, and 98%, respectively. The 5-year OS was 73% after surgery and increased to 76%, 82%, 88%, and 92% at 1, 2, 3, and 4 years, respectively. Subgroup analyses demonstrated the superiority of conditional survival was more pronounced in advanced stages than in stage I. And pT stage, pN stage, and lymphovascular invasion were significantly associated with DFS and OS. Conditional survival nomograms were constructed to predict the 5-year conditional DFS and OS probability given survival for 1, 2, 3, 4 years after surgery. Conditional survival can provide dynamic survival probability according to years that already survive, especially for patients with advanced stages. Taking into account the years already survived accounted for, novel nomograms contributed to effectively predicting conditional survival.

13.
Medicine (Baltimore) ; 103(19): e38148, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728479

RESUMEN

RATIONALE: Paraneoplastic neurological syndrome with anti-Hu antibody (Hu-PNS) is a neurological disorder that occur in patients with malignancy. The syndrome has a wide range of presentations and can present before diagnosis of primary malignancy. Familiarity with these paraneoplastic neurological syndromes can help early recognition and take appropriate regimens. PATIENTS CONCERNS: Diagnosis and treatment of Hu-PNS. DIAGNOSES: This is retrospective study that analyzed the clinical data of this case. Through retrospective analysis and targeted antibody screening, serum anti-Hu antibody was detected. Subsequent spinal imaging revealed a mass in the paraspinal region, which was confirmed as ganglioneuroblastoma by pathologic examination. INTERVENTIONS: The child was treated with a course of intravenous immunoglobulin and radical surgical operation without chemotherapy. OUTCOMES: The neurological symptoms were gradually improved and no signs indicate disease progression or tumor recurrence. LESSONS: Hu-PNS has rarely been reported in children with ganglioneuroblastomas. They can mimic non-neoplastic processes, making detection and diagnosis difficult. Serum and/or cerebrospinal fluid onconeural antibody can strongly indicate occult cancers. Early detection of paraneoplastic neurological syndromes can help take appropriate regimens and improve prognosis.


Asunto(s)
Ganglioneuroblastoma , Síndromes Paraneoplásicos del Sistema Nervioso , Humanos , Ganglioneuroblastoma/inmunología , Ganglioneuroblastoma/complicaciones , Síndromes Paraneoplásicos del Sistema Nervioso/inmunología , Síndromes Paraneoplásicos del Sistema Nervioso/diagnóstico , Masculino , Proteínas ELAV/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Preescolar , Estudios Retrospectivos
14.
Elife ; 122024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747713

RESUMEN

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Asunto(s)
Actinas , Retículo Endoplásmico , Forminas , Meiosis , Mitocondrias , Oocitos , Animales , Femenino , Ratones , Actinas/metabolismo , Retículo Endoplásmico/metabolismo , Forminas/metabolismo , Forminas/genética , Mitocondrias/metabolismo , Oocitos/metabolismo , Huso Acromático/metabolismo , Porcinos
15.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1848-1864, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812197

RESUMEN

Elucidating the quality markers(Q-markers) of traditional Chinese medicines is essential for understanding the mechanisms of action and promoting the rational use of traditional Chinese medicines as well as for developing traditional Chinese medicine-derived drugs. Studies have shown that surface plasmon resonance(SPR) is promising in this field. This study proposed a method based on pull-down with SPR chips to predict the Q-markers of Angong Niuhuang pills(AGNHP). Firstly, 71 main chemical components of AGNHP were analyzed by UPLC-Q-TOF-MS, and then network pharmacology was employed to predict the potential targets of AGNHP against stroke. Secondly, the STAT3 protein chip was constructed, and the extract of AGNHP was recovered by pull-down of the SPR system for STAT3 ligand. The potential active ingredients were collected, enriched, and identified as coptisine, palmatine, epiberberine, berberine, worenine, demethyleneberberine, jatrorrhizine, tetrahydrocoptisine, baicalein, and baicalin methyl ester. Next, the affinity constants of the 10 active ingredients were determined as 44.7, 44, 58.1, 51.3, 39.7, 32.1, 49.2, 69.1, 19.7, and 24.9 µmol·L~(-1), respectively. The molecular docking results showed that the 10 compounds could compete for binding with STAT3. This is the first report that SPR combined with UPLC-Q-TOF-MS is reliable and feasible for determining the active ingredients of AGNHP at the molecular level from complex systems. STAT3 could be used as a potential target for the biological quality evaluation of AGNHP.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas , Resonancia por Plasmón de Superficie , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas/métodos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Control de Calidad , Humanos , Cromatografía Líquida con Espectrometría de Masas
16.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587639

RESUMEN

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Asunto(s)
Cinesinas , Oocitos , Animales , Ratones , Transporte Biológico , Cinesinas/genética , Meiosis , Metafase
19.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474906

RESUMEN

This paper proposes a wind-speed-adaptive resonant piezoelectric energy harvester for offshore wind energy collection (A-PEH). The device incorporates a coil spring structure, which sets the maximum threshold of the output rotational frequency, allowing the A-PEH to maintain a stable output rotational frequency over a broader range of wind speeds. When the maximum output excitation frequency of the A-PEH falls within the sub-resonant range of the piezoelectric beam, the device becomes wind-speed-adaptive, enabling it to operate in a sub-resonant state over a wider range of wind speeds. Offshore winds exhibit an annual average speed exceeding 5.5 m/s with significant variability. Drawing from the characteristics of offshore winds, a prototype of the A-PEH was fabricated. The experimental findings reveal that in wind speed environments, the device has a startup wind speed of 4 m/s, and operates in a sub-resonant state when the wind speed exceeds 6 m/s. At this point, the A-PEH achieves a maximum open-circuit voltage of 40 V and an average power of 0.64 mW. The wind-speed-adaptive capability of the A-PEH enhances its ability to harness offshore wind energy, showcasing its potential applications in offshore wind environments.

20.
Micromachines (Basel) ; 15(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38542561

RESUMEN

Triboelectric nanogenerators (TENGs) can effectively collect low-frequency, disordered mechanical energy and are therefore widely studied in the field of ocean energy collection. Most of the rotary TENGs studied so far tend to have insufficient rotation, resulting in slow charge transfer rates in low-frequency ocean environments. For this reason, in this paper, we propose a wind-wave synergistic triboelectric nanogenerator (WWS-TENG). It is different from the traditional rotary TENGs based on free-standing mode in that its power generation unit has two types of rotors, and the two rotors rotate in opposite directions under the action of wind energy and wave energy, respectively. This type of exercise can more effectively collect energy. The WWS-TENG has demonstrated excellent performance in sea wind and wave energy harvesting. In the simulated ocean environment, the peak power can reach 13.5 mW under simulated wind-wave superposition excitation; the output of the WWS-TENG increased by 49% compared to single-wave power generation. The WWS-TENG proposal provides a novel means of developing marine renewable energy, and it also demonstrates broad application potential in the field of the self-powered marine Internet of Things (IoT).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...