Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 8015, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198195

RESUMEN

The phylum Cnidaria consists of several morphologically diverse classes including Anthozoa, Cubozoa, Hydrozoa, Polypodiozoa, Scyphozoa, Staurozoa, and Myxozoa. Myxozoa comprises two subclasses of obligate parasites-Myxosporea and Malacosporea, which demonstrate various degrees of simplification. Myxosporea were previously reported to lack the majority of core protein domains of apoptotic proteins including caspases, Bcl-2, and APAF-1 homologs. Other sequenced Cnidaria, including the parasite Polypodium hydriforme from Polypodiozoa do not share this genetic feature. Whether this loss of core apoptotic proteins is unique to Myxosporea or also present in its sister subclass Malacosporea was not previously investigated. We show that the presence of core apoptotic proteins gradually diminishes from free-living Cnidaria to Polypodium to Malacosporea to Myxosporea. This observation does not favor the hypothesis of catastrophic simplification of Myxosporea at the genetic level, but rather supports a stepwise adaptation to parasitism that likely started from early parasitic ancestors that gave rise to Myxozoa.


Asunto(s)
Antozoos , Cnidarios , Cubomedusas , Hidrozoos , Myxozoa , Animales , Cnidarios/genética , Filogenia , Hidrozoos/genética
2.
Curr Biol ; 32(21): 4607-4619.e7, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36126656

RESUMEN

Over the past decade, molecular phylogenetics has reshaped our understanding of the fungal tree of life by unraveling a hitherto elusive diversity of the protistan relatives of Fungi. Aphelida constitutes one of these novel deep branches that precede the emergence of osmotrophic fungal lifestyle and hold particular significance as the pathogens of algae. Here, we obtain and analyze the genomes of aphelid species Amoeboaphelidium protococcarum and Amoeboaphelidium occidentale. Genomic data unmask the vast divergence between these species, hidden behind their morphological similarity, and reveal hybrid genomes with a complex evolutionary history in two strains of A. protococcarum. We confirm the proposed sister relationship between Aphelida and Fungi using phylogenomic analysis and chart the reduction of characteristic proteins involved in phagocytic activity in the evolution of Holomycota. Annotation of aphelid genomes demonstrates the retention of actin nucleation-promoting complexes associated with phagocytosis and amoeboid motility and also reveals a conspicuous expansion of receptor-like protein kinases, uncharacteristic of fungal lineages. We find that aphelids possess multiple carbohydrate-processing enzymes that are involved in fungal cell wall synthesis but do not display rich complements of algal cell-wall-processing enzymes, suggesting an independent origin of fungal plant-degrading capabilities. Aphelid genomes show that the emergence of Fungi from phagotrophic ancestors relied on a common cell wall synthetic machinery but required a different set of proteins for digestion and interaction with the environment.


Asunto(s)
Eucariontes , Genómica , Eucariontes/fisiología , Filogenia , Plantas/genética , Hongos/genética , Hongos/metabolismo , Genoma Fúngico , Evolución Molecular
3.
Int J Mol Sci ; 22(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067798

RESUMEN

In humans and other vertebrates pannexin protein family was discovered by homology to invertebrate gap junction proteins. Several biological functions were attributed to three vertebrate pannexins members. Six clinically significant independent variants of the PANX1 gene lead to human infertility and oocyte development defects, and the Arg217His variant was associated with pronounced symptoms of primary ovarian failure, severe intellectual disability, sensorineural hearing loss, and kyphosis. At the same time, only mild phenotypes were observed in Panx1 knockout mice. In addition, a passenger mutation was identified in a popular line of Panx1 knockout mice, questioning even those effects. Using CRISPR/Cas9, we created a new line of Panx1 knockout mice and a new line of mice with the clinically significant Panx1 substitution (Arg217His). In both cases, we observed no significant changes in mouse size, weight, or fertility. In addition, we attempted to reproduce a previous study on sleep/wake and locomotor activity functions in Panx1 knockout mice and found that previously reported effects were probably not caused by the Panx1 knockout itself. We consider that the pathological role of Arg217His substitution in Panx1, and some Panx1 functions in general calls for a re-evaluation.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Conexinas/genética , Conexinas/fisiología , Pérdida Auditiva Sensorineural/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Fenotipo , Sueño/genética
4.
Front Neurosci ; 15: 643496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897357

RESUMEN

Sleep is not considered a pathological state, but it consumes a third of conscious human life. This share is much more than most optimistic life extension forecasts that biotechnologies or experimental and medical interventions can offer. Are there insurmountable physical or biological limitations to reducing the duration of sleep? How far can it be avoided without fatal consequences? What means can reduce the length of sleep? It is widely accepted that sleep is necessary for long-term survival. Here we review the limited yet intriguing evidence that is not consistent with this notion. We concentrate on clinical cases of complete and partial loss of sleep and on human mutations that result in a short sleep phenotype. These observations are supported by new animal studies and are discussed from the perspective of sleep evolution. Two separate hypotheses suggest distinct approaches for remodeling our sleep machinery. If sleep serves an unidentified vital physiological function, this indispensable function has to be identified before "sleep prosthesis" (technical, biological, or chemical) can be developed. If sleep has no vital function, but rather represents a timing mechanism for adaptive inactivity, sleep could be reduced by forging the sleep generation system itself, with no adverse effects.

5.
PeerJ ; 8: e9648, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194341

RESUMEN

BACKGROUND: SARS-CoV-2 is a novel coronavirus that causes COVID-19 infection, with a closest known relative found in bats. For this virus, hundreds of genomes have been sequenced. This data provides insights into SARS-CoV-2 adaptations, determinants of pathogenicity and mutation patterns. A comparison between patterns of mutations that occurred before and after SARS-CoV-2 jumped to human hosts may reveal important evolutionary consequences of zoonotic transmission. METHODS: We used publically available complete genomes of SARS-CoV-2 to calculate relative frequencies of single nucleotide variations. These frequencies were compared with relative substitutions frequencies between SARS-CoV-2 and related animal coronaviruses. A similar analysis was performed for human coronaviruses SARS-CoV and HKU1. RESULTS: We found a 9-fold excess of G-U transversions among SARS-CoV-2 mutations over relative substitution frequencies between SARS-CoV-2 and a close relative coronavirus from bats (RaTG13). This suggests that mutation patterns of SARS-CoV-2 have changed after transmission to humans. The excess of G-U transversions was much smaller in a similar analysis for SARS-CoV and non-existent for HKU1. Remarkably, we did not find a similar excess of complementary C-A mutations in SARS-CoV-2. We discuss possible explanations for these observations.

6.
Biomed Res Int ; 2020: 4657615, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32775422

RESUMEN

[This corrects the article DOI: 10.1155/2013/989410.].

7.
Front Genet ; 10: 443, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178892

RESUMEN

Two enigmatic groups of morphologically simple parasites of invertebrates, the Dicyemida (syn. Rhombozoa) and the Orthonectida, since the 19th century have been usually considered as two classes of the phylum Mesozoa. Early molecular evidence suggested their relationship within the Spiralia (=Lophotrochozoa), however, high rates of dicyemid and orthonectid sequence evolution led to contradicting phylogeny reconstructions. Genomic data for orthonectids revealed that they are highly simplified spiralians and possess a reduced set of genes involved in metazoan development and body patterning. Acquiring genomic data for dicyemids, however, remains a challenge due to complex genome rearrangements including chromatin diminution and generation of extrachromosomal circular DNAs, which are reported to occur during the development of somatic cells. We performed genomic sequencing of one species of Dicyema, and obtained transcriptomic data for two Dicyema spp. Homeodomain (homeobox) transcription factors, G-protein-coupled receptors, and many other protein families have undergone a massive reduction in dicyemids compared to other animals. There is also apparent reduction of the bilaterian gene complements encoding components of the neuromuscular systems. We constructed and analyzed a large dataset of predicted orthologous proteins from three species of Dicyema and a set of spiralian animals including the newly sequenced genome of the orthonectid Intoshia linei. Bayesian analyses recovered the orthonectid lineage within the Annelida. In contrast, dicyemids form a separate clade with weak affinity to the Rouphozoa (Platyhelminthes plus Gastrotricha) or (Entoprocta plus Cycliophora) suggesting that the historically proposed Mesozoa is a polyphyletic taxon. Thus, dramatic simplification of body plans in dicyemids and orthonectids, as well as their intricate life cycles that combine metagenesis and heterogony, evolved independently in these two lineages.

8.
Nucleic Acids Res ; 47(13): 6858-6870, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31194871

RESUMEN

Inverted repeats are common DNA elements, but they rarely overlap with protein-coding sequences due to the ensuing conflict with the structure and function of the encoded protein. We discovered numerous perfect inverted repeats of considerable length (up to 284 bp) embedded within the protein-coding genes in mitochondrial genomes of four Nematomorpha species. Strikingly, both arms of the inverted repeats encode conserved regions of the amino acid sequence. We confirmed enzymatic activity of the respiratory complex I encoded by inverted repeat-containing genes. The nucleotide composition of inverted repeats suggests strong selection at the amino acid level in these regions. We conclude that the inverted repeat-containing genes are transcribed and translated into functional proteins. The survey of available mitochondrial genomes reveals that several other organisms possess similar albeit shorter embedded repeats. Mitochondrial genomes of Nematomorpha demonstrate an extraordinary evolutionary compromise where protein function and stringent secondary structure elements within the coding regions are preserved simultaneously.


Asunto(s)
Genes de Helminto/genética , Genes Mitocondriales/genética , Código Genético , Genoma Mitocondrial , Helmintos/genética , Secuencias Invertidas Repetidas/genética , Secuencia de Aminoácidos , Animales , Composición de Base , Secuencia de Bases , ADN de Helmintos/genética , ADN Ribosómico/genética , Complejo I de Transporte de Electrón/genética , Evolución Molecular , Femenino , Proteínas del Helminto/genética , Masculino , Consumo de Oxígeno , ARN de Helminto/genética , ARN Ribosómico 18S/genética , Selección Genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
9.
BMC Evol Biol ; 19(Suppl 1): 46, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813901

RESUMEN

BACKGROUND: Gap junctions (GJ) are one of the most common forms of intercellular communication. GJs are assembled from proteins that form channels connecting the cytoplasm of adjacent cells. They are considered to be the main or the only type of intercellular channels and the universal feature of all multicellular animals. Two unrelated protein families are currently considered to be involved in this function, namely, connexins and pannexins (pannexins/innexins). Pannexins were hypothesized to be the universal GJ proteins of multicellular animals, distinct from connexins that are characteristic of chordates only. Here we have revised this supposition by applying growing high throughput sequencing data from diverse metazoan species. RESULTS: Pannexins were found in Chordates, Ctenophores, Cnidarians, and in the most major groups of bilateral protostomes. Yet some metazoans appear to have neither connexins nor pannexins in their genomes. We detected no connexins or pannexins/innexins homologues in representatives of all five classes of echinoderms and their closest relatives hemichordates with available genomic sequences. Despite this, our intracellular recordings demonstrate direct electrical coupling between blastomeres at the 2-cell embryo of the echinoderm (starfish Asterias rubens). In these experiments, carboxyfluorescein fluorescent dye did not diffuse between electrically coupled cells. This excludes the possibility that the observed electrical coupling is mediated by incomplete cytoplasm separation during cleavage. CONCLUSION: Functional GJs are present in representatives of the clade that lack currently recognized GJ protein families. New undiscovered protein families utilized for intercellular channels are predicted. It is possible that the new type(s) of intercellular channels are present in parallel to pannexin and connexin gap junctions in animal groups, other than Echinodermata.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Animales , Comunicación Celular , Equinodermos/citología , Equinodermos/genética , Equinodermos/metabolismo , Genoma
10.
Sci Rep ; 7(1): 17834, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259280

RESUMEN

The nervous system controls most rhythmic behaviors, with a remarkable exception. In Caenorhabditis elegans periodic defecation rhythm does not appear to involve the nervous system. Such oscillations are studied in detail with genetic and molecular biology tools. The small size of C. elegans cells impairs the use of standard electrophysiological methods. We studied a similar rhythmic pacemaker in the noticeably larger gut cells of Heterorhabditis megidis nematode. H. megidis defecation cycle is driven by a central pattern generator (CPG) associated with unusual all-or-none hyper-polarization "action potential". The CPG cycle period depends on the membrane potential and CPG cycling also persisted in experiments where the membrane potential of gut cells was continuously clamped at steady voltage levels. The usual excitable tissue description does not include the endoderm or imply the generation of hyper-polarization spikes. The nematode gut cells activity calls for a reevaluation of the excitable cells definition.


Asunto(s)
Defecación/fisiología , Fenómenos Electrofisiológicos/fisiología , Rhabditoidea/fisiología , Animales , Endodermo/fisiología , Mucosa Intestinal/patología , Potenciales de la Membrana/fisiología , Sistema Nervioso/fisiopatología
11.
Front Cell Neurosci ; 11: 210, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769767

RESUMEN

During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1) hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1-/- mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement of pannexins (Panx) in the coordination of fundamental sleep-associated brain processes, such as neuronal activity and regulation of cerebrovascular tone. Panx1 hemichannels are likely implicated in the regulation of the sleep-wake cycle via an indirect effect of released ATP on adenosine receptors and through interaction with other somnogens, such as IL-1ß, TNFα and prostaglandin D2. In addition to the recently established role of Panx1 in the regulation of endothelium-dependent arterial dilation, similar signaling pathways are the major cellular component of neurovascular coupling. The new discovered role of Panx in sleep regulation may have broad implications in coordinating neuronal activity and homeostatic housekeeping processes during the sleep-wake cycle.

12.
PLoS One ; 11(10): e0165072, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27755612

RESUMEN

Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.


Asunto(s)
Genoma Mitocondrial , Animales , Secuencia de Bases , Teorema de Bayes , Codón , ADN Mitocondrial/química , ADN Mitocondrial/aislamiento & purificación , ADN Mitocondrial/metabolismo , Duplicación de Gen , Orden Génico , Reordenamiento Génico , Conformación de Ácido Nucleico , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Análisis de Secuencia de ADN
13.
Curr Biol ; 26(13): 1768-1774, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27374341

RESUMEN

Orthonectids are rare parasites of marine invertebrates [1] that are commonly treated in textbooks as a taxon of uncertain affinity [2]. Trophic forms of orthonectids reside in the tissues of their hosts as multinucleated plasmodia, generating short-lived, worm-like ciliated female and male organisms that exit into the environment for copulation [3]. These ephemeral males and females are composed of just several hundred somatic cells and are deprived of digestive, circulatory, or excretory systems. Since their discovery in the 19(th) century, the orthonectids were described as organisms with no differentiated cell types and considered as part of Mesozoa, a putative link between multicellular animals and their unicellular relatives. More recently, this view was challenged as the new data suggested that orthonectids are animals that became simplified due to their parasitic way of life [3, 4]. Here, we report the genomic sequence of Intoshia linei, one of about 20 known species of orthonectids. The genomic data confirm recent morphological analysis asserting that orthonectids are members of Spiralia and possess muscular and nervous systems [5]. The 43-Mbp genome of I. linei encodes about 9,000 genes and retains those essential for the development and activity of muscular and nervous systems. The simplification of orthonectid body plan is associated with considerable reduction of metazoan developmental genes, leaving what might be viewed as the minimal gene set necessary to retain critical bilaterian features.


Asunto(s)
Genoma , Invertebrados/clasificación , Animales , Femenino , Interacciones Huésped-Parásitos , Invertebrados/genética , Filogenia , Análisis de Secuencia de ADN
14.
Biol Direct ; 9: 14, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24990702

RESUMEN

BACKGROUND: Cutting edge research of human microbiome diversity has led to the development of the microbiome-gut-brain axis concept, based on the idea that gut microbes may have an impact on the behavior of their human hosts. Many examples of behavior-altering parasites are known to affect members of the animal kingdom. Some prominent examples include Ophiocordyceps unilateralis (fungi), Toxoplasma gondii (protista), Wolbachia (bacteria), Glyptapanteles sp. (arthropoda), Spinochordodes tellinii (nematomorpha) and Dicrocoelium dendriticum (flat worm). These organisms belong to a very diverse set of taxonomic groups suggesting that the phenomena of parasitic host control might be more common in nature than currently established and possibly overlooked in humans. PRESENTATION OF THE HYPOTHESIS: Some microorganisms would gain an evolutionary advantage by encouraging human hosts to perform certain rituals that favor microbial transmission. We hypothesize that certain aspects of religious behavior observed in the human society could be influenced by microbial host control and that the transmission of some religious rituals could be regarded as the simultaneous transmission of both ideas (memes) and parasitic organisms. TESTING THE HYPOTHESIS: We predict that next-generation microbiome sequencing of samples obtained from gut or brain tissues of control subjects and subjects with a history of voluntary active participation in certain religious rituals that promote microbial transmission will lead to the discovery of microbes, whose presence has a consistent and positive association with religious behavior. Our hypothesis also predicts a decline of participation in religious rituals in societies with improved sanitation. IMPLICATIONS OF THE HYPOTHESIS: If proven true, our hypothesis may provide insights on the origin and pervasiveness of certain religious practices and provide an alternative explanation for recently published positive associations between parasite-stress and religiosity. The discovery of novel microorganisms that affect host behavior may improve our understanding of neurobiology and neurochemistry, while the diversity of such organisms may be of interest to evolutionary biologists and religious scholars. REVIEWERS: This article was reviewed by Prof. Dan Graur, Dr. Rob Knight and Dr. Eugene Koonin.


Asunto(s)
Bacterias/metabolismo , Conducta Ceremonial , Modelos Biológicos , Religión , Animales , Humanos
15.
Biol Direct ; 9: 8, 2014 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-24885326

RESUMEN

Pannexin1 is ubiquitously expressed in vertebrate tissues, but the role it plays in vascular tone regulation remains unclear. We found that Pannexin1 expression level is much higher in the endothelium relative to smooth muscle of saphenous artery. The ability of endothelium-intact arteries for dilation was significantly impaired whereas contractile responses were considerably increased in mice with genetic ablation of Pannexin1. No such increased contractile responses were detected in the endothelium-denuded arteries. Combined, our findings suggest a new function of Pannexin1 as an important player in normal endothelium-dependent regulation of arterial tone, where it facilitates vessel dilation and attenuates constriction.


Asunto(s)
Arterias/fisiología , Conexinas/genética , Endotelio Vascular/fisiología , Proteínas del Tejido Nervioso/genética , Animales , Conexinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Reacción en Cadena de la Polimerasa
16.
17.
Biomed Res Int ; 2013: 989410, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058920

RESUMEN

Substitution rates strongly depend on their nucleotide context. One of the most studied examples is the excess of C > T mutations in the CG context in various groups of organisms, including vertebrates. Studies on the molecular mechanisms underlying this mutation regularity have provided insights into evolution, mutagenesis, and cancer development. Recently several other hypermutable motifs were identified in the human genome. There is an increased frequency of T > C mutations in the second position of the words ATTG and ATAG and an increased frequency of A > C mutations in the first position of the word ACAA. For a better understanding of evolution, it is of interest whether these mutation regularities are human specific or present in other vertebrates, as their presence might affect the validity of currently used substitution models and molecular clocks. A comprehensive analysis of mutagenesis in 4 bp mutation contexts requires a vast amount of mutation data. Such data may be derived from the comparisons of individual genomes or from single nucleotide polymorphism (SNP) databases. Using this approach, we performed a systematical comparison of mutation regularities within 2-4 bp contexts in Mus musculus and Homo sapiens and uncovered that even closely related organisms may have notable differences in context-dependent mutation regularities.


Asunto(s)
Modelos Genéticos , Mutagénesis/genética , Mutación/genética , Animales , Emparejamiento Base , Humanos , Ratones , Polimorfismo de Nucleótido Simple/genética
18.
Int J Genomics ; 2013: 173616, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23984310

RESUMEN

In general, mutation frequencies are context-dependent: specific adjacent nucleotides may influence the probability to observe a specific type of mutation in a genome. Recently, several hypermutable motifs were identified in the human genome. Namely, there is an increased frequency of T>C mutations in the second position of the words ATTG and ATAG and an increased frequency of A>C mutations in the first position of the word ACAA. Previous studies have also shown that there is a remarkable difference between the mutagenesis of humans and drosophila. While C>T mutations are overrepresented in the CG context in humans (and other vertebrates), this mutation regularity is not observed in Drosophila melanogaster. Such differences in the observed regularities of mutagenesis between representatives of different taxa might reflect differences in the mechanisms involved in mutagenesis. We performed a systematical comparison of mutation regularities within 2-4 bp contexts in Homo sapiens and Drosophila melanogaster and found that the aforementioned contexts are not hypermutable in fruit flies. It seems that most mutation contexts affect mutation rates in a similar manner in H. sapiens and D. melanogaster; however, several important exceptions are noted and discussed.

19.
BMC Bioinformatics ; 12: 268, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21718472

RESUMEN

BACKGROUND: The substitution rates within different nucleotide contexts are subject to varying levels of bias. The most well known example of such bias is the excess of C to T (C > T) mutations in CpG (CG) dinucleotides. The molecular mechanisms underlying this bias are important factors in human genome evolution and cancer development. The discovery of other nucleotide contexts that have profound effects on substitution rates can improve our understanding of how mutations are acquired, and why mutation hotspots exist. RESULTS: We compared rates of inherited mutations in 1-4 bp nucleotide contexts using reconstructed ancestral states of human single nucleotide polymorphisms (SNPs) from intergenic regions. Chimp and orangutan genomic sequences were used as outgroups. We uncovered 3.5 and 3.3-fold excesses of T > C mutations in the second position of ATTG and ATAG words, respectively, and a 3.4-fold excess of A > C mutations in the first position of the ACAA word. CONCLUSIONS: Although all the observed biases are less pronounced than the 5.1-fold excess of C > T mutations in CG dinucleotides, the three 4 bp mutation contexts mentioned above (and their complementary contexts) are well distinguished from all other mutation contexts. This provides a challenge to discover the underlying mechanisms responsible for the observed excesses of mutations.


Asunto(s)
Islas de CpG , Genoma Humano , Mutación Puntual , Primates/genética , Selección Genética , Animales , Humanos , Pan troglodytes/genética , Polimorfismo de Nucleótido Simple , Pongo/genética
20.
J Bioinform Comput Biol ; 8(3): 519-34, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20556860

RESUMEN

We studied the distribution of 1-7 bp words in a dataset that includes 139 complete eukaryotic genomes, 33 masked eukaryotic genomes and coding regions from 35 genomes. We tested different statistical models to determine over- and under-represented words. The method described by Karlin et al. has the strongest predictive power compared to other methods. Using this method we identified over- and under-represented words consistent within a large array of taxonomic groups. Some of those words have not yet been described as exclusive. For example, CGCG is over-represented in CG-deficient organisms. We also describe exceptions for widely known exclusive words, such as CG and TA.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Genoma/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...