Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 17(855): eadn2616, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316663

RESUMEN

Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple regions in the brain to regulate cognitive functions. Degeneration of BFCNs is seen with aging, after brain injury, and in neurodegenerative disorders. An increase in the amount of the immature proform of nerve growth factor (proNGF) in the cerebral cortex results in retrograde degeneration of BFCNs through activation of proNGF receptor p75NTR. Here, we investigated the signaling cascades initiated at the axon terminal that mediate proNGF-induced retrograde degeneration. We found that local axonal protein synthesis and retrograde transport mediated proNGF-induced degeneration initiated from the axon terminal. Analysis of the nascent axonal proteome revealed that proNGF stimulation of axonal terminals triggered the synthesis of numerous proteins within the axon, and pathway analysis showed that amyloid precursor protein (APP) was a key upstream regulator in cultured BFCNs and in mice. Our findings reveal a functional role for APP in mediating BFCN axonal degeneration and cell death induced by proNGF.


Asunto(s)
Precursor de Proteína beta-Amiloide , Axones , Prosencéfalo Basal , Factor de Crecimiento Nervioso , Animales , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Axones/metabolismo , Axones/patología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patología , Ratones , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Ratones Endogámicos C57BL , Células Cultivadas , Transducción de Señal
2.
eNeuro ; 10(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37558465

RESUMEN

Traumatic brain injury (TBI) elicits neuronal loss at the site of injury and progressive neuronal loss in the penumbra. However, the consequences of TBI on afferent neurons projecting to the injured tissue from distal locations is unknown. Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple brain regions including the cortex, regulate many cognitive functions, and are compromised in numerous neurodegenerative disorders. To determine the consequence of cortical injury on these afferent neurons, we used the fluid percussion injury model of traumatic brain injury and assessed the effects on BFCN survival and axon integrity in male and female mice. Survival or death of BF neurons can be regulated by neurotrophins or proneurotrophins, respectively. The injury elicited an induction of proNGF and proBDNF in the cortex and a loss of BFCNs ipsilateral to the injury compared with sham uninjured mice. The p75NTR knock-out mice did not show loss of BFCN neurons, indicating a retrograde degenerative effect of the cortical injury on the afferent BFCNs mediated through p75NTR. In contrast, locus ceruleus neurons, which also project throughout the cortex, were unaffected by the injury, suggesting specificity in retrograde degeneration after cortical TBI. Proneurotrophins (proNTs) provided directly to basal forebrain axons in microfluidic cultures triggered retrograde axonal degeneration and cell death, which did not occur in the absence of p75NTR. This study shows that after traumatic brain injury, proNTs induced in the injured cortex promote BFCN axonal degeneration and retrograde neuron loss through p75NTR.


Asunto(s)
Prosencéfalo Basal , Lesiones Traumáticas del Encéfalo , Receptores de Factor de Crecimiento Nervioso , Animales , Femenino , Masculino , Ratones , Lesiones Traumáticas del Encéfalo/metabolismo , Neuronas Colinérgicas/metabolismo , Neuronas Aferentes , Degeneración Retrógrada/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
3.
Front Mol Neurosci ; 16: 1147597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305555

RESUMEN

Introduction: Recently, the cerebellum has been implicated with non-motor functions, including cognitive and emotional behavior. Anatomical and functional studies demonstrate bidirectional cerebellar connections with brain regions involved in social cognition. Cerebellar developmental abnormalities and injury are often associated with several psychiatric and mental disorders including autism spectrum disorders and anxiety. The cerebellar granule neurons (CGN) are essential for cerebellar function since they provide sensorimotor, proprioceptive, and contextual information to Purkinje cells to modify behavior in different contexts. Therefore, alterations to the CGN population are likely to compromise cerebellar processing and function. Previously we demonstrated that the p75 neurotrophin receptor (p75NTR) was fundamental for the development of the CGN. In the absence of p75NTR, we observed increased proliferation of the granule cell precursors (GCPs), followed by increased GCP migration toward the internal granule layer. The excess granule cells were incorporated into the cerebellar network, inducing alterations in cerebellar circuit processing. Methods: In the present study, we used two conditional mouse lines to specifically delete the expression of p75NTR in CGN. In both mouse lines, deletion of the target gene was under the control of the transcription factor Atoh-1 promotor, however, one of the lines was also tamoxifen-inducible. Results: We observed a loss of p75NTR expression from the GCPs in all cerebellar lobes. Compared to control animals, both mouse lines exhibited a reduced preference for social interactions when presented with a choice to interact with a mouse or an object. Open-field locomotor behavior and operant reward learning were unaffected in both lines. Lack of preference for social novelty and increased anxiety-related behavior was present in mice with constitutive p75NTR deletion; however, these effects were not present in the tamoxifen-inducible mice with p75NTR deletion that more specifically targeted the GCPs. Discussion: Our findings demonstrate that alterations to CGN development by loss of p75NTR alter social behavior, and contribute to the increasing evidence that the cerebellum plays a role in non-motor-related behaviors, including social behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...