Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 45(W1): W325-W330, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28431137

RESUMEN

The TRAnsient Pockets in Proteins (TRAPP) webserver provides an automated workflow that allows users to explore the dynamics of a protein binding site and to detect pockets or sub-pockets that may transiently open due to protein internal motion. These transient or cryptic sub-pockets may be of interest in the design and optimization of small molecular inhibitors for a protein target of interest. The TRAPP workflow consists of the following three modules: (i) TRAPP structure- generation of an ensemble of structures using one or more of four possible molecular simulation methods; (ii) TRAPP analysis-superposition and clustering of the binding site conformations either in an ensemble of structures generated in step (i) or in PDB structures or trajectories uploaded by the user; and (iii) TRAPP pocket-detection, analysis, and visualization of the binding pocket dynamics and characteristics, such as volume, solvent-exposed area or properties of surrounding residues. A standard sequence conservation score per residue or a differential score per residue, for comparing on- and off-targets, can be calculated and displayed on the binding pocket for an uploaded multiple sequence alignment file, and known protein sequence annotations can be displayed simultaneously. The TRAPP webserver is freely available at http://trapp.h-its.org.


Asunto(s)
Antiprotozoarios/química , Antagonistas del Ácido Fólico/química , Proteínas Protozoarias/química , Programas Informáticos , Tetrahidrofolato Deshidrogenasa/química , Trypanosoma cruzi/química , Secuencia de Aminoácidos , Antiprotozoarios/síntesis química , Sitios de Unión , Diseño de Fármacos , Antagonistas del Ácido Fólico/síntesis química , Humanos , Internet , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Alineación de Secuencia , Especificidad de la Especie , Termodinámica , Trypanosoma cruzi/enzimología
2.
Biochimie ; 112: 96-110, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25748164

RESUMEN

The aminoacyl-tRNA binding site (A-site) is located in helix 44 of small ribosomal subunit. The mobile adenines 1492 and 1493 (Escherichia coli numbering), forming the A-site bulge, act as a functional switch that ensures mRNA decoding accuracy. Structural data on the oligonucleotide models mimicking the ribosomal A-site with sequences corresponding to bacterial and human cytoplasmic sites confirm that this RNA motif forms also without the ribosome context. We performed all-atom molecular dynamics simulations of these crystallographic A-site models to compare their conformational properties. We found that the human A-site bulge is more internally flexible than the bacterial one and has different base pairing preferences, which result in the overall different shapes of these bulges and cation density distributions. Also, in the human A-site model we observed repetitive destacking of A1492, while A1493 was more stably paired than in the bacterial variant. Based on the dynamics of the A-sites we suggest why aminoglycoside antibiotics, which target the bacterial A-site, have lower binding affinities and anti-translational activities toward the human variant.


Asunto(s)
Escherichia coli/química , Simulación de Dinámica Molecular , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Cristalografía por Rayos X , Humanos
3.
PLoS One ; 9(11): e111811, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25379961

RESUMEN

The conformational properties of the aminoacyl-tRNA binding site (A-site), and its surroundings in the Escherichia coli 30S ribosomal subunit, are of great relevance in designing antibacterial agents. The 30S subunit A-site is near ribosomal protein S12, which neighbors helices h27 and H69; this latter helix, of the 50S subunit, is a functionally important component of an intersubunit bridge. Experimental work has shown that specific point mutations in S12 (K42A, R53A) yield hyper-accurate ribosomes, which in turn confers resistance to the antibiotic 'paromomycin' (even when this aminoglycoside is bound to the A-site). Suspecting that these effects can be elucidated in terms of the local atomic interactions and detailed dynamics of this region of the bacterial ribosome, we have used molecular dynamics simulations to explore the motion of a fragment of the E. coli ribosome, including the A-site. We found that the ribosomal regions surrounding the A-site modify the conformational space of the flexible A-site adenines 1492/93. Specifically, we found that A-site mobility is affected by stacking interactions between adenines A1493 and A1913, and by contacts between A1492 and a flexible side-chain (K43) from the S12 protein. In addition, our simulations reveal possible indirect pathways by which the R53A and K42A mutations in S12 are coupled to the dynamical properties of the A-site. Our work extends what is known about the atomistic dynamics of the A-site, and suggests possible links between the biological effects of hyper-accurate mutations in the S12 protein and conformational properties of the ribosome; the implications for S12 dynamics help elucidate how the miscoding effects of paromomycin may be evaded in antibiotic-resistant mutants of the bacterial ribosome.


Asunto(s)
Simulación de Dinámica Molecular , Mutación , Paromomicina/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/citología , Datos de Secuencia Molecular , Movimiento , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , Aminoacil-ARN de Transferencia/química , Proteínas Ribosómicas/genética
4.
J Phys Chem B ; 118(24): 6687-701, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24845793

RESUMEN

The mRNA decoding site (A-site) in the small ribosomal subunit controls fidelity of the translation process. Here, using molecular dynamics simulations and bioinformatic analyses, we investigated the structural dynamics of the human mitochondrial A-site (native and A1490G mutant) and compared it with the dynamics of the bacterial A-site. We detected and characterized a specific RNA backbone configuration, S-turn2, which occurs in the human mitochondrial but not in the bacterial A-site. Mitochondrial and bacterial A-sites show different propensities to form S-turn2 that may be caused by different base-pairing patterns of the flanking nucleotides. Also, the S-turn2 structural stability observed in the simulations supports higher accuracy and lower speed of mRNA decoding in mitochondria in comparison with bacteria. In the mitochondrial A-site, we observed collective movement of stacked nucleotides A1408·C1409·C1410, which may explain the known differences in aminoglycoside antibiotic binding affinities toward the studied A-site variants.


Asunto(s)
Mitocondrias/metabolismo , Simulación de Dinámica Molecular , Ribosomas/química , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Sitios de Unión , Biología Computacional , Humanos , Enlace de Hidrógeno , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
5.
J Phys Chem B ; 115(3): 532-46, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21192664

RESUMEN

By hindering or "silencing" protein translation in vivo, antisense nucleic acid analogues that hybridize to bacterial rRNA could serve as a promising class of antibacterial compounds. Thus, we performed a comparative analysis of the dynamical properties of modified oligonucleotides based upon a sequence (5')r(UGUUACGACU)(3') that is complementary to bacterial ribosomal A-site RNA. In particular, 25 ns explicit solvent molecular dynamics simulations were computed for the following six single-stranded decamers: (1) the above RNA in unmodified form; (2) the 2'-O-methyl-modified RNA; (3) peptide nucleic acid (PNA) analogues of the above sequence, containing either (a) T or (b) U; and (4) two serine-substituted PNAs. Our results show that 2'-O-methylation attenuates RNA backbone dynamics, thereby preventing interconversion between stacked and unstacked conformations. The PNA analogue is rendered less flexible by replacing uracil with thymine; in addition, we found that derivatizing the PNA backbone with serine leads to enhanced base-stacking interactions. Consistent with known solubility properties of these classes of molecules, both RNAs exhibited greater localization of water molecules than did PNA. In terms of counterions, the initially helical conformation of the 2'-O-methyl RNA exhibits the highest Na(+) density among all the simulated decamers, while Na(+) build-up was most negligible for the neutral PNA systems. Further studies of the conformational and physicochemical properties of such modified single-stranded oligomers may facilitate better design of nucleic acid analogues, particularly those capable of serving as specific, high-affinity ribosomal A-site binders.


Asunto(s)
ADN de Cadena Simple/química , Ácidos Nucleicos/química , ARN Ribosómico/química , Secuencia de Bases , Simulación de Dinámica Molecular , Estructura Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...