RESUMEN
Autoimmune encephalitis can be classified into antibody-defined subtypes, which can manifest with immunotherapy-responsive movement disorders sometimes mimicking non-inflammatory aetiologies. In the elderly, anti-LGI1 and contactin associated protein like 2 (CASPR2) antibody-associated diseases compose a relevant fraction of autoimmune encephalitis. Patients with LGI1 autoantibodies are known to present with limbic encephalitis and additionally faciobrachial dystonic seizures may occur. However, the clinical spectrum of CASPR2 autoantibody-associated disorders is more diverse including limbic encephalitis, Morvan's syndrome, peripheral nerve hyperexcitability syndrome, ataxia, pain and sleep disorders. Reports on unusual, sometimes isolated and immunotherapy-responsive movement disorders in CASPR2 autoantibody-associated syndromes have caused substantial concern regarding necessity of autoantibody testing in patients with movement disorders. Therefore, we aimed to systematically assess their prevalence and manifestation in patients with CASPR2 autoimmunity. This international, retrospective cohort study included patients with CASPR2 autoimmunity from participating expert centres in Europe. Patients with ataxia and/or movement disorders were analysed in detail using questionnaires and video recordings. We recruited a comparator group with anti-LGI1 encephalitis from the GENERATE network. Characteristics were compared according to serostatus. We identified 164 patients with CASPR2 autoantibodies. Of these, 149 (90.8%) had only CASPR2 and 15 (9.1%) both CASPR2 and LGI1 autoantibodies. Compared to 105 patients with LGI1 encephalitis, patients with CASPR2 autoantibodies more often had movement disorders and/or ataxia (35.6 versus 3.8%; P < 0.001). This was evident in all subgroups: ataxia 22.6 versus 0.0%, myoclonus 14.6 versus 0.0%, tremor 11.0 versus 1.9%, or combinations thereof 9.8 versus 0.0% (all P < 0.001). The small group of patients double-positive for LGI1/CASPR2 autoantibodies (15/164) significantly more frequently had myoclonus, tremor, 'mixed movement disorders', Morvan's syndrome and underlying tumours. We observed distinct movement disorders in CASPR2 autoimmunity (14.6%): episodic ataxia (6.7%), paroxysmal orthostatic segmental myoclonus of the legs (3.7%) and continuous segmental spinal myoclonus (4.3%). These occurred together with further associated symptoms or signs suggestive of CASPR2 autoimmunity. However, 2/164 patients (1.2%) had isolated segmental spinal myoclonus. Movement disorders and ataxia are highly prevalent in CASPR2 autoimmunity. Paroxysmal orthostatic segmental myoclonus of the legs is a novel albeit rare manifestation. Further distinct movement disorders include isolated and combined segmental spinal myoclonus and autoimmune episodic ataxia.
Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Encefalitis Límbica , Trastornos del Movimiento , Mioclonía , Canales de Potasio con Entrada de Voltaje , Humanos , Anciano , Estudios Retrospectivos , Temblor , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ataxia , Autoanticuerpos , Trastornos del Movimiento/etiología , Contactinas/metabolismoRESUMEN
Autoantibodies against leucine-rich glioma-inactivated 1 (LGI1) occur in patients with encephalitis who present with frequent focal seizures and a pattern of amnesia consistent with focal hippocampal damage. To investigate whether the cellular and subcellular distribution of LGI1 may explain the localization of these features, and hence gain broader insights into LGI1's neurobiology, we analysed the detailed localization of LGI1 and the diversity of its protein interactome, in mouse brains using patient-derived recombinant monoclonal LGI1 antibodies. Combined immunofluorescence and mass spectrometry analyses showed that LGI1 is enriched in excitatory and inhibitory synaptic contact sites, most densely within CA3 regions of the hippocampus. LGI1 is secreted in both neuronal somatodendritic and axonal compartments, and occurs in oligodendrocytic, neuro-oligodendrocytic and astro-microglial protein complexes. Proteomic data support the presence of LGI1-Kv1-MAGUK complexes, but did not reveal LGI1 complexes with postsynaptic glutamate receptors. Our results extend our understanding of regional, cellular and subcellular LGI1 expression profiles and reveal novel LGI1-associated complexes, thus providing insights into the complex biology of LGI1 and its relationship to seizures and memory loss.
Asunto(s)
Glioma , Péptidos y Proteínas de Señalización Intracelular , Animales , Ratones , Leucina , Proteómica , Autoanticuerpos , ConvulsionesRESUMEN
Pain is a under-recognized association of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies. Of 147 patients with these autoantibodies, pain was experienced by 17 of 33 (52%) with CASPR2- versus 20 of 108 (19%) with LGI1 antibodies (p = 0.0005), and identified as neuropathic in 89% versus 58% of these, respectively. Typically, in both cohorts, normal nerve conduction studies and reduced intraepidermal nerve fiber densities were observed in the sampled patient subsets. In LGI1 antibody patients, pain responded to immunotherapy (p = 0.008), often rapidly, with greater residual patient-rated impairment observed in CASPR2 antibody patients (p = 0.019). Serum CASPR2 antibodies, but not LGI1 antibodies, bound in vitro to unmyelinated human sensory neurons and rodent dorsal root ganglia, suggesting pathophysiological differences that may underlie our clinical observations. ANN NEUROL 2021;90:683-690.
Asunto(s)
Autoanticuerpos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/inmunología , Neuralgia/metabolismo , Autoanticuerpos/inmunología , Moléculas de Adhesión Celular Neuronal/inmunología , Moléculas de Adhesión Celular Neuronal/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales de Potasio con Entrada de Voltaje/inmunologíaRESUMEN
Autoantibodies against leucine-rich glioma inactivated 1 (LGI1) are found in patients with limbic encephalitis and focal seizures. Here, we generate patient-derived monoclonal antibodies (mAbs) against LGI1. We explore their sequences and binding characteristics, plus their pathogenic potential using transfected HEK293T cells, rodent neuronal preparations, and behavioural and electrophysiological assessments in vivo after mAb injections into the rodent hippocampus. In live cell-based assays, LGI1 epitope recognition was examined with patient sera (n = 31), CSFs (n = 11), longitudinal serum samples (n = 15), and using mAbs (n = 14) generated from peripheral B cells of two patients. All sera and 9/11 CSFs bound both the leucine-rich repeat (LRR) and the epitempin repeat (EPTP) domains of LGI1, with stable ratios of LRR:EPTP antibody levels over time. By contrast, the mAbs derived from both patients recognized either the LRR or EPTP domain. mAbs against both domain specificities showed varied binding strengths, and marked genetic heterogeneity, with high mutation frequencies. LRR-specific mAbs recognized LGI1 docked to its interaction partners, ADAM22 and ADAM23, bound to rodent brain sections, and induced internalization of the LGI1-ADAM22/23 complex in both HEK293T cells and live hippocampal neurons. By contrast, few EPTP-specific mAbs bound to rodent brain sections or ADAM22/23-docked LGI1, but all inhibited the docking of LGI1 to ADAM22/23. After intrahippocampal injection, and by contrast to the LRR-directed mAbs, the EPTP-directed mAbs showed far less avid binding to brain tissue and were consistently detected in the serum. Post-injection, both domain-specific mAbs abrogated long-term potentiation induction, and LRR-directed antibodies with higher binding strengths induced memory impairment. Taken together, two largely dichotomous populations of LGI1 mAbs with distinct domain binding characteristics exist in the affinity matured peripheral autoantigen-specific memory pools of individuals, both of which have pathogenic potential. In human autoantibody-mediated diseases, the detailed characterization of patient mAbs provides a valuable method to dissect the molecular mechanisms within polyclonal populations.