Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38949691

RESUMEN

An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.

2.
ACS Nano ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254288

RESUMEN

Drug delivery through complex skin is currently being studied using various innovative structural and material strategies due to the low delivery efficiency of the multilayered stratum corneum as a barrier function. Existing microneedle-based or electrical stimulation methods have made considerable advances, but they still have technical limitations to reduce skin discomfort and increase user convenience. This work introduces the design, operation mechanism, and performance of noninvasive transdermal patch with dual-layered suction chamber cluster (d-SCC) mimicking octopus-limb capable of wet adhesion with enhanced adhesion hysteresis and physical stimulation. The d-SCC facilitates cupping-driven drug delivery through the skin with only finger pressure. Our device enables nanoscale deformation control of stratum corneum of the engaged skin, allowing for efficient transport of diverse drugs through the stratum corneum without causing skin discomfort. Compared without the cupping effect of d-SCC, applying negative pressure to the porcine, human cadaver, and artificial skin for 30 min significantly improved the penetration depth of liquid-formulated subnanoscale medicines up to 44, 56, and 139%. After removing the cups, an additional acceleration in delivery to the skin was observed. The feasibility of d-SCC was demonstrated in an atopic dermatitis-induced model with thickened stratum corneum, contributing to the normalization of immune response.

3.
Plants (Basel) ; 12(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068579

RESUMEN

Jatropha podagrica holds a longstanding place in traditional herbal medicine, primarily utilized for addressing skin infections, acting as antipyretics, diuretics, and purgatives. In this study, our primary objective was to investigate the secondary metabolites present in J. podagrica leaves, with the aim of pinpointing natural compounds exhibiting potential antiviral activities. Five secondary metabolites (1-5), including an auronol glycoside (1), two coumarins (2 and 3), a chromane (4) and a gallotannin (5), were isolated from J. podagrica leaves. Compound 1 presented as an amalgamation of unseparated mixtures, yet its intricate composition was adroitly unraveled through the strategic deployment of a chiral HPLC column. This tactic yielded the isolation of epimers (+)-1 and (-)-1, ascertained as unreported auronol glycosides. The structures of these novel compounds, (+)-1 and (-)-1, were elucidated to be (2S)-hovetrichoside C [(+)-1] and (2R)-hovetrichoside C [(-)-1] through NMR data and HR-ESIMS analyses, enzymatic hydrolysis, and comparison of optical rotation values. Cytotoxicity and antiviral effects were assessed for the isolated compounds ((+)-1, (-)-1 and 2-5), along with compound 1a (the aglycone of 1), in the A549 human alveolar basal epithelial cell line. Each compound demonstrated a cell viability of approximately 80% or higher, confirming their non-toxic nature. In the group of compounds, compounds 3-5 demonstrated antiviral effects based on RT-qPCR results, with individual enhancements ranging from approximately 28 to 38%. Remarkably, compound 4 exhibited the most substantial antiviral effect. Utilization of compound 4 to assess immune boosting and anti-inflammatory effects revealed increased levels of STING, RIG-I, NLRP3, and IL-10 along with a decrease in TNF-α and IL-6. Therefore, these findings underscore the potential of these active compounds 3-5 not only as therapeutic agents for SARS-CoV-2 but also as new contenders for upcoming pandemics.

4.
J Nat Prod ; 86(8): 1891-1900, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37506055

RESUMEN

Streptomyces spp. are well-known symbiotic microorganisms that produce antimicrobial metabolites against various pathogens. We isolated actinomycetes from the body surface of the termite Odontotermes formosanus and identified it as Streptomyces neopeptinius BYF101 based on 16S rRNA phylogenetic analysis. Chemical analysis of the cultures of termite-associated S. neopeptinius BYF101 via HR-MS2 and GNPS analyses enabled the isolation and identification of 20 metabolites, including the unreported obscurolide-type metabolites (1-3). The chemical structures of unreported compounds (1-3) were elucidated using HR-ESI-MS and 1D and 2D NMR analysis, and their absolute configurations were determined via chemical reactions followed by the application of competing enantioselective acylation (CEA) and computational methods for ECD and DP4+ probability calculation. The isolated compounds (1-20) were tested to determine their antifungal activity against two human fungal pathogens, Candida albicans and Cryptococcus neoformans. Among the compounds tested, indole-3-carboxylic acid (9) displayed antifungal activity against C. neoformans, with an MIC value of 12 µg/mL.


Asunto(s)
Cryptococcus neoformans , Isópteros , Streptomyces , Animales , Humanos , Antifúngicos/química , Isópteros/microbiología , ARN Ribosómico 16S/genética , Filogenia , Streptomyces/química , Pruebas de Sensibilidad Microbiana , Candida albicans
5.
Plants (Basel) ; 11(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501426

RESUMEN

Acer tegmentosum, a deciduous tree belonging to Aceraceae, has been used in traditional oriental medicine for treating hepatic disorders, such as hepatitis, cirrhosis, and liver cancer. We evaluated the estrogen-like effects of A. tegmentosum using an estrogen receptor (ER)-positive breast cancer cell line, namely MCF-7, to identify potential phytoestrogens and found that an aqueous extract of A. tegmentosum promoted cell proliferation in MCF-7 cells. Five phenolic compounds (1-5) were separated and identified from the active fraction using bioassay-guided fractionation of crude A. tegmentosum extract and phytochemical analysis. The chemical structures of the compounds were characterized as vanillic acid (1), 4-hydroxy-benzoic acid (2), syringic acid (3), isoscopoletin (4), and (E)-ferulic acid (5) based on the analysis of their nuclear magnetic resonance spectra and liquid chromatography-mass spectrometry data. All five compounds were evaluated using an E-screen assay for their estrogen-like effects on MCF-7 cells. Among the tested compounds, only 4-hydroxy-benzoic acid (2) promoted the proliferation of MCF-7 cells, which was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of 4-hydroxy-benzoic acid (2) was evaluated via western blotting analysis to determine the expression levels of extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), serine/threonine kinase (AKT), and ERα. Our results demonstrated that 4-hydroxy-benzoic acid (2) induced the increase in the protein expression levels of p-ERK, p-AKT, p-PI3K, and p-Erα, concentration dependently. Collectively, these experimental results suggest that 4-hydroxy-benzoic acid (2) is responsible for the estrogen-like effects of A. tegmentosum and may potentially aid in the control of estrogenic effects during menopause.

6.
Adv Sci (Weinh) ; 9(31): e2202978, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35975453

RESUMEN

Bioinspired soft devices, which possess high adaptability to targeted objects, provide promising solutions for a variety of industrial and medical applications. However, achieving stable and switchable attachment to objects with curved, rough, and irregular surfaces remains difficult, particularly in dry and underwater environments. Here, a highly adaptive soft microstructured switchable adhesion device is presented, which is inspired by the geometric and material characteristics of the tiny denticles on the surface of an octopus sucker. The contact interface of the artificial octopus sucker (AOS) is imprinted with soft, microscale denticles that interact adaptably with highly rough or curved surfaces. Robust and controllable attachment of the AOS with soft microdenticles (AOS-sm) to dry and wet surfaces with diverse morphologies is achieved, allowing conformal attachment on curved and soft objects with high roughness. In addition, AOS-sms assembled with an octopus-arm-inspired soft actuator demonstrate reliable grasping and the transport of complex polyhedrons, rough objects, and soft, delicate, slippery biological samples.


Asunto(s)
Materiales Biomiméticos , Calcificaciones de la Pulpa Dental , Octopodiformes , Animales , Fenómenos Físicos , Fuerza de la Mano
7.
ACS Omega ; 7(27): 23736-23743, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847243

RESUMEN

The fruit of Tetradium ruticarpum, known as Evodiae Fructus, is a traditional herbal medicine used to treat gastric and duodenal ulcers, vomiting, and diarrhea. The traditional usage can be potentially associated with the antibacterial activity of T. ruticarpum fruits against Helicobacter pylori. However, so far, the antibacterial activity of T. ruticarpum fruits and antibacterial components against H. pylori has not been investigated despite the traditional folk use. The current study was conducted to investigate the bioactive chemical components of T. ruticarpum fruits and evaluate their antibacterial activity against H. pylori. Phytochemical investigation of the EtOH extract of T. ruticarpum fruits led to the isolation and identification of nine compounds (1-9), including phellolactone (1), the absolute configuration of which has not yet been determined. The chemical structures of the isolated compounds were elucidated by analyzing the spectroscopic data from one-dimensional (1D) and two-dimensional (2D) NMR and high-resolution electrospray ionization mass spectrometry (HR-ESIMS) experiments. Specifically, the absolute configuration of compound 1 was established by the application of computational methods, including electronic circular dichroism (ECD) calculation and the NOE/ROE-based interproton distance measurement technique via peak amplitude normalization for the improved cross-relaxation (PANIC) method. In the anti-H. pylori activity test, compound 3 showed the most potent antibacterial activity against H. pylori strain 51, with 94.4% inhibition (MIC50 and MIC90 values of 22 and 50 µM, respectively), comparable to that of metronidazole (97.0% inhibition, and MIC50 and MIC90 values of 17 and 46 µM, respectively). Moreover, compound 5 exhibited moderate antibacterial activity against H. pylori strain 51, with 58.6% inhibition (MIC50 value of 99 µM), which was higher than that of quercetin (34.4% inhibition) as a positive control. Based on the bioactivity results, we also analyzed the structure-activity relationship of the anti-H. pylori activity. Conclusion: These findings demonstrated that T. ruticarpum fruits had antibacterial activity against H. pylori and could be used in the treatment of gastric and duodenal ulcers. Meanwhile, the active compound, 1-methyl-2-(8E)-8-tridecenyl-4(1H)-quinolinone (3), identified herein also indicated the potential application in the development of novel antibiotics against H. pylori.

8.
Bioeng Transl Med ; 7(2): e10279, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600658

RESUMEN

Mesenchymal stem cells such as human adipose tissue-derived stem cells (hADSCs) have been used as a representative therapeutic agent for tissue regeneration because of their high proliferation and paracrine factor-secreting abilities. However, certain points regarding conventional ADSC delivery systems, such as low cell density, secreted cytokine levels, and cell viability, still need to be addressed for treating severe wounds. In this study, we developed a three-dimensional (3D) cavity-structured stem cell-laden system for overdense delivery of cells into severe wound sites. Our system includes a hydrophobic surface and cavities that can enhance the efficiency of cell delivery to the wound site. In particular, the cavities in the system facilitate hADSC spheroid formation, increasing therapeutic growth factor expression compared with 2D cultured cells. Our hADSC spheroid-loaded patch exhibited remarkably improved cell localization at the wound site and dramatic therapeutic efficacy compared to the conventional cell injection method. Taken together, the hADSC spheroid delivery system focused on cell delivery, and stem cell homing effect at the wound site showed a significantly enhanced wound healing effect. By overcoming the limitations of conventional cell delivery methods, our overdense cell delivery system can contribute to biomedical and clinical applications.

9.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35215265

RESUMEN

Amanita hemibapha subsp. javanica (Amanitaceae) is an edible Korean wild mushroom. A. hemibapha subsp. javanica is often confused with A. subjunquillea, known as the East Asian death cap, which is potentially fatal when ingested. This study aimed to conduct the first chemical investigation of A. hemibapha subsp. javanica, which resulted in the isolation of seven fatty acid derivatives (1-7) and three steroids (8-10) from the MeOH extract of its fruiting bodies, and their structures were determined by comparing their NMR spectroscopic data with those previously reported, along with the data from LC/MS. Compound 1 was reported previously without the identification of its absolute configuration; its structure, including the absolute configuration was confirmed for the first time, in this study, by using 1H NMR and its fragmentation patterns in MS/MS data, and LC/MS analysis. A recently developed method using competing enantioselective acylation (CEA) coupled with LC/MS analysis was applied for determining the absolute configuration of compound 1, which revealed the 11S-configuration. In the anti-Helicobacter pylori activity test, compound 3 showed antibacterial activity against H. pylori strain 51 with 38.0% inhibition, comparable to that of quercetin (34.4% inhibition) as a positive control. Specifically, compound 4 displayed the most potent antibacterial activity against H. pylori strain 51 with 80.5% inhibition at the final concentration of 100 µm with a MIC50 value of 72 µm. These findings suggested that the active compound 4 is a natural antibiotic that may be used in the development of novel antibiotics against H. pylori. In addition, the first chemical investigation of A. hemibapha subsp. javanica revealed that this mushroom can serve as a promising natural source for the bioactive natural products.

10.
Adv Mater ; 34(5): e2105338, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34783075

RESUMEN

Recent studies on soft adhesives have sought to deeply understand how their chemical or mechanical structures interact strongly with living tissues. The aim is to optimally address the unmet needs of patients with acute or chronic diseases. Synergistic adhesion involving both electrostatic (hydrogen bonds) and mechanical interactions (capillarity-assisted suction stress) seems to be effective in overcoming the challenges associated with long-term unstable coupling to tissues. Here, an electrostatically and mechanically synergistic mechanism of residue-free, sustainable, in situ tissue adhesion by implementing hybrid multiscale architectonics. To deduce the mechanism, a thermodynamic model based on a tailored multiscale combinatory adhesive is proposed. The model supports the experimental results that the thermodynamically controlled swelling of the nanoporous hydrogel embedded in the hierarchical elastomeric structure enhances biofluid-insensitive, sustainable, in situ adhesion to diverse soft, slippery, and wet organ surfaces, as well as clean detachment in the peeling direction. Based on the robust tissue adhesion capability, universal reliable measurements of electrophysiological signals generated by various tissues, ranging from rodent sciatic nerve, the muscle, brain, and human skin, are successfully demonstrated.


Asunto(s)
Hidrogeles , Adhesivos Tisulares , Adhesivos/química , Humanos , Hidrogeles/química , Electricidad Estática , Adherencias Tisulares , Adhesivos Tisulares/química
11.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34681241

RESUMEN

Withania somnifera (Solanaceae), well-known as 'Indian ginseng' or 'Ashwagandha', is a medicinal plant that is used in Ayurvedic practice to promote good health and longevity. As part of an ongoing investigation for bioactive natural products with novel structures, we performed a phytochemical examination of the roots of W. somnifera employed with liquid chromatography-mass spectrometry (LC/MS)-based analysis. The chemical analysis of the methanol extract of W. somnifera roots using repeated column chromatography and high-performance liquid chromatography under the guidance of an LC/MS-based analysis resulted in a new withanolide, withasomniferol D (1). The structure of the newly isolated compound was elucidated by spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution (HR) electrospray ionization (ESI) mass spectroscopy, and its absolute configuration was established by electronic circular dichroism (ECD) calculations. The anti-adipogenic activities of withasomniferol D (1) were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time polymerase chain reaction (qPCR). We found that withasomniferol D (1) inhibited adipogenesis and suppressed the enlargement of lipid droplets compared to the control. Additionally, the mRNA expression levels of adipocyte markers Fabp4 and Adipsin decreased noticeably following treatment with 25 µM of withasomniferol D (1). Taken together, these findings provide experimental evidence that withasomniferol D (1), isolated from W. somnifera, exhibits anti-adipogenic activity, supporting the potential application of this compound in the treatment of obesity and related metabolic diseases.

12.
ACS Nano ; 15(9): 14137-14148, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34425674

RESUMEN

The development of bioinspired switchable adhesive systems has promising solutions in various industrial/medical applications. Switchable and perceptive adhesion regardless of the shape or surface shape of the object is still challenging in dry and aquatic surroundings. We developed an electronic sensory soft adhesive device that recapitulates the attaching, mechanosensory, and decision-making capabilities of a soft adhesion actuator. The soft adhesion actuator of an artificial octopus sucker may precisely control its robust attachment against surfaces with various topologies in wet environments as well as a rapid detachment upon deflation. Carbon nanotube-based strain sensors are three-dimensionally coated onto the irregular surface of the artificial octopus sucker to mimic nerve-like functions of an octopus and identify objects via patterns of strain distribution. An integration with machine learning complements decision-making capabilities to predict the weight and center of gravity for samples with diverse shapes, sizes, and mechanical properties, and this function may be useful in turbid water or fragile environments, where it is difficult to utilize vision.


Asunto(s)
Nanotubos de Carbono , Electrónica
13.
Biomaterials ; 275: 120954, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34130141

RESUMEN

Low cell engraftment is a major problem in tissue engineering. Although various methods related with cell sheets have been attempted to resolve the issue, low cell viability due to oxygen and nutrient depletion remains an obstacle toward advanced therapeutic applications. Cell therapy using fibroblasts is thought of as a good alternative due to the short doubling times of fibroblasts together with their immunomodulatory properties. Furthermore, three-dimensional (3D) fibroblasts exhibit unique angiogenic and inflammation-manipulating properties that are not present in two-dimensional (2D) forms. However, the therapeutic effect of 3D fibroblasts in tissue regeneration has not been fully elucidated. Macrophage polarization has been widely studied, as it stimulates the transition from the inflammation to the proliferation phase of wound healing. Although numerous strategies have been developed to achieve better polarization of macrophages, the low efficacy of these strategies and safety issues remain problematic. To this end, we introduced a biocompatible flat patch with specifically designed holes that form a spheroids-incorporated human dermal fibroblast sheet (SIS) to mediate the activity of inflammatory cytokines for M2 polarization and increase angiogenic efficacy. We further confirmed in vivo enhancement of wound healing with an SIS-laden skin patch (SISS) compared to conventional cell therapy.


Asunto(s)
Piel , Cicatrización de Heridas , Fibroblastos , Humanos , Activación de Macrófagos , Macrófagos
14.
Sci Adv ; 7(25)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34134988

RESUMEN

Recent advances in bioinspired nano/microstructures have received attention as promising approaches with which to implement smart skin-interfacial devices for personalized health care. In situ skin diagnosis requires adaptable skin adherence and rapid capture of clinical biofluids. Here, we report a simple, all-in-one device consisting of microplungers and hydrogels that can rapidly capture biofluids and conformally attach to skin for stable, real-time monitoring of health. Inspired by the male diving beetle, the microplungers achieve repeatable, enhanced, and multidirectional adhesion to human skin in dry/wet environments, revealing the role of the cavities in these architectures. The hydrogels within the microplungers instantaneously absorb liquids from the epidermis for enhanced adhesiveness and reversibly change color for visual indication of skin pH levels. To realize advanced biomedical technologies for the diagnosis and treatment of skin, our suction-mediated device is integrated with a machine learning framework for accurate and automated colorimetric analysis of pH levels.


Asunto(s)
Escarabajos , Hidrogeles/metabolismo , Aprendizaje Automático , Enfermedades de la Piel/terapia , Adhesividad , Animales , Hidrogeles/química , Masculino , Enfermedades de la Piel/diagnóstico
15.
Nano Lett ; 21(16): 7079-7085, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34156856

RESUMEN

Recently, three-dimensional (3D) porous foams have been studied, but further improvement in nanoscale surface area and stretchability is required for electronic and energy applications. Herein, a general strategy is reported to form a tailored wrinkling structure on strut surfaces inside a 3D polydimethylsiloxane (PDMS) polymeric foam. Controlled wrinkles are created on the struts of 3D foam through an oxygen plasma treatment to form a bilayer surface of PDMS on uniaxially prestretched 3D PDMS foam, followed by relaxation. After plasma treatment for 1 h and prestretching of 40%, the wrinkled 3D foam greatly improves specific surface area and stretchability by over 60% and 75%, respectively, compared with the pristine 3D PDMS foam. To prove its applicability with improved performances, supercapacitors are prepared by coating a conductive material on the wrinkled 3D foam. The resulting supercapacitors exhibit an increased storage capacity (8.3 times larger), maintaining storage capacity well under stretching up to 50%.

16.
ACS Appl Mater Interfaces ; 13(5): 6930-6940, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33523645

RESUMEN

For highly conformable and universal transport devices, bioinspired dry adhesion systems with reversible molecular attractions (e.g., van der Waals forces, capillarity, or suction stress) between the engaged surfaces have recently become favorable for various dry/wet processes in flexible devices and medical applications. In addition, many efforts have been made for switchable attachments of such adhesives by employing costly sophisticated systems such as mechanically deformable chucks, UV-radiating components, or fluidic channels. In this work, we propose a simple electrothermally actuating transport device based on an octopus-inspired microsphere-embedded sucker (OMS). The adhesive with microsphere-embedded suckers offers enhanced adhesion on dry/wet surfaces, in accordance with investigation of the geometric and materials parameters of the novel suction architecture for maximizing adhesion interactions. Inspired by muscle actuation of octopus tentacles, we laminate the electrothermally reactive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonic acid) (PEDOT:PSS) layer on the backside of the OMS adhesive patch. By controlling inputs of electrical energy, our assembled actuator may actively expand and contract reversibly to induce switchable attachments and detachments. Our bioinspired device can be integrated onto a robotic arm to attach and release against dry/wet flexible thin objects.

17.
Bioorg Med Chem Lett ; 36: 127828, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33508466

RESUMEN

Bioactivity-driven LC/MS-based phytochemical analysis of the root bark extract of Ulmus davidiana var. japonica led to the isolation of 10 compounds including a new coumarin glycoside derivative, ulmusakidian (1). The structure of the new compound was elucidated using extensive spectroscopic analyses via 1D and 2D NMR spectroscopic data interpretations, HR-ESIMS, and chemical transformation. The isolated compounds 1-10 were tested for their antifungal activity against human fungal pathogens Cryptococcus neoformans and Candida albicans. Compounds 9 and 10 showed antifungal activity against C. neoformans, with the lowest minimal inhibitory concentration (MIC) of 12.5-25.0 µg/mL, whereas none of the compounds showed antifungal activity against C. albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Fenoles/farmacología , Extractos Vegetales/farmacología , Ulmus/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fenoles/química , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química , Relación Estructura-Actividad
18.
Biomedicines ; 9(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477919

RESUMEN

Safflower (Carthamus tinctorius) is an annual herb belonging to the Compositae family; it has a history of use as a food colorant, dye, and medicine in oriental countries. LC-MS-UV-based chemical analysis of extract of the florets of C. tinctorius led to the isolation of two new C10-polyacetylene glycosides, (8Z)-decaene-4,6-diyne-1,10-diol-1-O-ß-d-glucopyranoside (1) and (8S)-deca-4,6-diyne-1,8-diol-1-O-ß-d-glucopyranoside (2), together with five known analogs (3-7). The structures of the new compounds were determined by using 1D and 2D NMR spectroscopic data and HR-MS data, as well as chemical transformations. Of compounds 1-7, compounds 2, 3, and 4 inhibited the adipogenesis of 3T3-L1 preadipocytes, whereas compounds 1 and 6 promoted adipogenesis. Compounds 2, 3, and 4 also prevented lipid accumulation through the suppression of the expression of lipogenic genes and the increase of the expression of lipolytic genes. Moreover, compounds 3 and 4 activated AMPK, which is known to facilitate lipid metabolism. Our findings provide a mechanistic rationale for the use of safflower-derived polyacetylene glycosides as potential therapeutic agents against obesity.

19.
Molecules ; 27(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35011267

RESUMEN

Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells. Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated and identified four steroids and four fatty acids from the active fraction. All eight compounds were evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates, only (3ß,5α,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3ß,5α,22E)-ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor α (ERα). We found that (3ß,5α,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK, PI3K, Akt, and ERα. Together, these experimental results suggest that (3ß,5α,22E)-ergost-22-en-3-ol is responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic activity in menopause.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Estrona/farmacología , Transducción de Señal/efectos de los fármacos , Agaricales/química , Productos Biológicos/química , Productos Biológicos/farmacología , Biomarcadores , Proliferación Celular/efectos de los fármacos , Estrona/análogos & derivados , Estrona/aislamiento & purificación , Estrona/uso terapéutico , Femenino , Hongos/química , Terapia de Reemplazo de Hormonas , Humanos , Células MCF-7 , Modelos Biológicos , Estructura Molecular
20.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261209

RESUMEN

Rhubarb is a well-known herb worldwide and includes approximately 60 species of the Rheum genus. One of the representative plants is Rheum palmatum, which is prescribed as official rhubarb due to its pharmacological potential in the Korean and Chinese pharmacopoeia. In our bioactive screening, we found out that the EtOH extract of R. palmatum inhibited hepatic stellate cell (HSC) activation by transforming growth factor ß1 (TGF-ß1). Chemical investigation of the EtOH extract led to the isolation of chrysophanol 8-O-glucoside, which was determined by structural analysis using NMR spectroscopic techniques and electrospray ionization mass spectrometry (ESIMS). To elucidate the effects of chrysophanol 8-O-glucoside on HSC activation, activated LX-2 cells were treated for 48 h with chrysophanol 8-O-glucoside, and α-SMA and collagen, HSC activation markers, were measured by comparative quantitative real-time PCR (qPCR) and western blotting analysis. Chrysophanol 8-O-glucoside significantly inhibited the protein and mRNA expression of α-SMA and collagen compared with that in TGF-ß1-treated LX-2 cells. Next, the expression of phosphorylated SMAD2 (p-SMAD2) and p-STAT3 was measured and the translocation of p-STAT3 to the nucleus was analyzed by western blotting analysis. The expression of p-SMAD2 and p-STAT3 showed that chrysophanol 8-O-glucoside strongly downregulated STAT3 phosphorylation by inhibiting the nuclear translocation of p-STAT3, which is an important mechanism in HSC activation. Moreover, chrysophanol 8-O-glucoside suppressed the expression of p-p38, not that of p-JNK or p-Erk, which can activate STAT3 phosphorylation and inhibit MMP2 expression, the downstream target of STAT3 signaling. These findings provided experimental evidence concerning the hepatoprotective effects of chrysophanol 8-O-glucoside against liver damage and revealed the molecular basis underlying its anti-fibrotic effects through the blocking of HSC activation.


Asunto(s)
Antraquinonas/farmacología , Glucósidos/farmacología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Sustancias Protectoras/farmacología , Rheum/química , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Antraquinonas/química , Etanol , Glucósidos/química , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Fosforilación , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...