Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Adv Mater ; : e2406464, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140781

RESUMEN

The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in all-vdW heterostructures, large unconventional SOT remains elusive and the robustness of the field-free switching against external magnetic field has not been examined, which hinders further applications. Here, the study demonstrates the field-free switching in an all-vdW heterostructure combining a type-II Weyl semimetal TaIrTe4 and above-room-temperature ferromagnet Fe3GaTe2. The fully field-free switching can be achieved at 2.56 × 1010 A m-2 at 300 K and a large SOT effective field efficiency of the out-of-plane polarized spin current generated by TaIrTe4 is determined to be 0.37. Moreover, it is found that the switching polarity cannot be changed until the external in-plane magnetic field reaches 252 mT, indicating a robust switching against the magnetic field. The numerical simulation suggests the large unconventional SOT reduces the switching current density and enhances the robustness of the switching. The work shows that all-vdW heterostructures are promising candidates for future highly efficient and stable SOT-based devices.

2.
Int J Biol Macromol ; : 134570, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122080

RESUMEN

Skin wound dressings are commonly utilized for the treatment of skin injuries, as they effectively facilitate wound healing and possess anti-inflammatory and antibacterial properties. However, conventional dressings fail to inhibit ROS production and promote vascularization, leading to delayed wound healing. Here, we developed injectable self-crosslinking hydrogels through thiolated hyaluronic acid (HASH/rhCOLIII) with enhancing the ROS inhibitory capacity while preserving the cell adhesion ability of hyaluronic acid. Additionally, recombinant humanized collagen type III (rhCOLIII) is incorporated via electrostatic adsorption to further enhance mechanical strength and angiogenesis properties of the hydrogel. The HASH/rhCOLIII demonstrated excellent biocompatibility, remarkable ROS scavenging ability, as well as hemostatic and angiogenic properties. Cell experiment results show that HASH/rhCOLIII has excellent biocompatibility and can significantly promote angiogenesis. Animal experiments results showed that HASH/rhCOLIII exhibits anti-inflammatory effects, significantly accelerating wound healing in a full-thickness skin defect model. These findings highlight that HASH/rhCOLIII hydrogel holds great promise as an advanced dressing for effective wound healing.

3.
Ren Fail ; 46(2): 2387205, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39120130

RESUMEN

BACKGROUND: To compare the impact of tunneled cuffed catheters (TCCs) and arteriovenous fistulas (AVFs) on outcomes in elderly hemodialysis (HD) patients. METHODS: A retrospective matched cohort study was performed. Propensity score matching (PSM) was applied to balance the baseline conditions, and we compared all-cause mortality, major adverse cardiovascular and cerebrovascular events (MACCEs), hospitalization, and infection rates between AVF and TCC patients ≥70 years old. Cox survival analysis was used to analyze the risk factors for death. RESULTS: There were 2119 patients from our center in the Chinese National Renal Data System (CNRDS) between 1 January 2010 and 10 October 2023. Among these patients, 77 TCC patients were matched with 77 AVF patients. There was no significant difference in all-cause mortality between the TCC and AVF groups (30.1/100 vs. 33.3/100 patient-years, p = 0.124). Among the propensity score-matched cohorts, no significant differences in Kaplan-Meier curves were observed between the two groups (log-rank p = 0.242). The TCC group had higher rates of MACCEs, hospitalization, and infection than the AVF group (33.7/100 vs. 29.5/100 patient-years, 101.2/100 vs. 79.5/100 patient-years, and 30.1/100 vs. 14.1/100 patient-years, respectively). Multivariate analysis showed that high Charlson comorbidity index (CCI) score was a risk factor for death. CONCLUSIONS: There was no significant difference in all-cause mortality between elderly HD patients receiving TCCs and AVFs. Compared with those with a TCC, elderly HD patients with an AVF have a lower risk of MACCEs, hospitalization, and infection.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Puntaje de Propensión , Diálisis Renal , Humanos , Masculino , Femenino , Anciano , Estudios Retrospectivos , Fallo Renal Crónico/terapia , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/mortalidad , Factores de Riesgo , Derivación Arteriovenosa Quirúrgica/efectos adversos , Anciano de 80 o más Años , Hospitalización/estadística & datos numéricos , China/epidemiología , Pronóstico , Estimación de Kaplan-Meier
4.
Int J Biol Macromol ; 276(Pt 2): 133982, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029854

RESUMEN

It is still difficult for a single antibacterial modality to realize satisfactory management of bacterial breeding in food preservation. To solve this problem, we developed a photothermal-derived dual-mode synergistic bactericidal konjac glucomannan (KGM)/polycaprolactone (PCL) bilayer film incorporated with quercetin-loaded melanin-like nanoparticles (Q@MNPs). The results showed that the mechanical properties (TS: 29.8 MPa, EAB: 43.1 %), UV shielding properties, and water resistance (WCA: 124.1°, WVP: 3.92 g mm/m2 day kPa) of KGM-Q@MNPs/PCL bilayer films were significantly improved. More importantly, KGM-Q@MNPs/PCL bilayer film presented outstanding photothermal inversion and controlled release behavior of Q triggered by near infrared (NIR) radiation, thus contributing to excellent dual-mode synergistic antibacterial properties against E. coli and S. aureus. Meanwhile, the KGM-Q@MNPs/PCL bilayer film possessed good biocompatibility and low toxicity. As a proof-of-concept application, we further verified the significant value of film for the preservation of cherry tomatoes. Since KGM-Q@MNPs/PCL bilayer film showed excellent biodegradability, this work will aid the development of sustainable antibacterial food packaging materials.

5.
Foods ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998513

RESUMEN

Due to the growing concerns surrounding microbial contamination and food safety, there has been a surge of interest in fabricating novel food packaging with highly efficient antibacterial activity. Herein, we describe novel photodynamic antibacterial konjac glucomannan (KGM)/polyvinylpyrrolidone (PVP) nanofibers incorporated with lignin-zinc oxide composite nanoparticles (L-ZnONPs) and curcumin (Cur) via electrospinning technology. The resulting KGM/PVP/Cur/L-ZnONPs nanofibers exhibited favorable hydrophobic properties (water contact angle: 118.1°), thermal stability, and flexibility (elongation at break: 241.9%). Notably, the inclusion of L-ZnONPs and Cur endowed the nanofibers with remarkable antioxidant (ABTS radical scavenging activity: 98.1%) and photodynamic antimicrobial properties, demonstrating enhanced inhibitory effect against both Staphylococcus aureus (inhibition: 12.4 mm) and Escherichia coli (12.1 mm). As a proof-of-concept study, we evaluated the feasibility of applying nanofibers to fresh strawberries, and the findings demonstrated that our nanofibers could delay strawberry spoilage and inhibit microbial growth. This photodynamic antimicrobial approach holds promise for design of highly efficient antibacterial food packaging, thereby contributing to enhanced food safety and quality assurance.

6.
J Sci Food Agric ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032018

RESUMEN

BACKGROUND: To produce jasmine tea of excellent quality, it is crucial to select jasmine flowers at their optimal growth stage during harvesting. However, achieving this goal remains a challenge due to environmental and manual factors. This study addresses this issue by classifying different jasmine flowers based on visual attributes using the YOLOv7 algorithm, one of the most advanced algorithms in convolutional neural networks. RESULTS: The mean average precision (mAP value) for detecting jasmine flowers using this model is 0.948, and the accuracy for five different degrees of openness of jasmine flowers, namely small buds, buds, half-open, full-open and wiltered, is 87.7%, 90.3%, 89%, 93.9% and 86.4%, respectively. Meanwhile, other ways of processing the images in the dataset, such as blurring and changing the brightness, also increased the credibility of the algorithm. CONCLUSION: This study shows that it is feasible to use deep learning algorithms for distinguishing jasmine flowers at different growth stages. This study can provide a reference for jasmine production estimation and for the development of intelligent and precise flower-picking applications to reduce flower waste and production costs. © 2024 Society of Chemical Industry.

7.
World J Diabetes ; 15(6): 1226-1233, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38983818

RESUMEN

BACKGROUND: Accumulating clinical evidence has shown that diabetes mellitus (DM) is a serious risk factor for cardiovascular disorders and an important factor for adverse cardiovascular events. AIM: To explore the value of the combined determination of the neutrophil-lymphocyte ratio (NLR) and red blood cell distribution width (RDW) in the early diagnosis and prognosis evaluation of DM complicated with heart failure (HF). METHODS: We retrospectively analyzed clinical data on 65 patients with type 2 DM (T2DM) complicated with HF (research group, Res) and 60 concurrent patients with uncomplicated T2DM (control group, Con) diagnosed at Zhejiang Provincial People's Hospital between January 2019 and December 2021. The NLR and RDW values were determined and comparatively analyzed, and their levels in T2DM + HF patients with different cardiac function grades were recorded. The receiver operating characteristic (ROC) curves were plotted to determine the NLR and RDW values (alone and in combination) for the early diagnosis of HF. The correlation between NLR and RDW with the presence or absence of cardiac events was also investigated. RESULTS: Higher NLR and RDW levels were identified in the Res vs the Con groups (P < 0.05). The NLR and RDW increased gradually and synchronously with the deterioration of cardiac function in the Res group, with marked differences in their levels among patients with grade II, III, and IV HF (P < 0.05). ROC curve analysis revealed that NLR combined with RDW detection had an area under the curve of 0.915, a sensitivity of 76.9%, and a specificity of 100% for the early diagnosis of HF. Furthermore, HF patients with cardiac events showed higher NLR and RDW values compared with HF patients without cardiac events. CONCLUSION: NLR and RDW were useful laboratory indicators for the early diagnosis of DM complicated with HF, and their joint detection was beneficial for improving diagnostic efficiency. Additionally, NLR and RDW values were directly proportional to patient outcomes.

8.
Int J Biol Macromol ; 276(Pt 1): 133752, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986984

RESUMEN

The purpose of this study was to evaluate the preservation effects of konjac glucomannan (KGM)/oregano essential oil (OEO) Pickering emulsion-based pads (K/OPE pads) on large yellow croaker (Pseudosciaena crocea) fillets stored at 4 °C. The K/OPE pads were fabricated using a freeze-drying technique. The homogeneous distribution of the OEO Pickering emulsions in the KGM matrix was observed using scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that the OEO emulsions were encapsulated in the KGM and there was hydrogen bonding interaction between them. Compared with the KGM pads, the K/OPE pad groups demonstrated enhanced antioxidant and antimicrobial properties. When the content of OPE was increased from 20 % to 40 %, the antioxidant performance of the K/OPE pads increased from 48.09 % ± 0.03 % to 86.65 % ± 0.02 % and the inhibition range of Escherichia coli and Staphylococcus aureus increased to 13.84 ± 0.81 and 16.87 ± 1.53 mm, respectively. At the same time, K/OPE pads were more effective in inhibiting the formation of total volatile alkaline nitrogen and the production of thiobarbituric acid-reactive substances, thereby helping in reducing water loss and maintaining the muscle tissue structure of fish fillets for a longer storage time. Consequently, these K/OPE40 pads extended the shelf life of the fish fillets by an additional 4 days and delayed spoilage during refrigerated storage. The findings suggest that the K/OPE pads can effectively safeguard the quality of refrigerated large yellow croaker fillets, presenting their potential as an active packaging material in the fish preservation industry.

9.
Angew Chem Int Ed Engl ; : e202410557, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932706

RESUMEN

The performance and stability of organic metal halide perovskite (OMHP) optoelectronic devices have been associated with ion migration. Understanding of nanoscale resolved organic cation migration mechanism would facilitate structure engineering and commercialization of OMHP. Here, we report a three-dimensional approach for in situ nanoscale infrared imaging of organic ion migration behavior in OMHPs, enabling to distinguish migrations along grain boundary and in crystal lattice. Our results reveal that organic cation migration along OMHP film surface and grain boundaries (GBs) occurs at lower biases than in crystal lattice. We visualize the transition of organic cation migration channels from GBs to volume upon increasing electric field. The temporal resolved results demonstrate the fast MA+ migration kinetics at GBs, which is comparable to diffusivity of halide ions. Our findings help understand the role of organic cations in the performance of OMHP devices, and the proposed approach holds broad applicability for revealing migration mechanisms of organic ions in OMHPs based optoelectronic devices.

10.
ACS Macro Lett ; 13(7): 859-865, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38934638

RESUMEN

Silyl ether constitutes a multipurpose (macro)molecular functionality for being, e.g., SuFEx-clickable and easily cleavable as a hydroxyl precursor. Its direct incorporation by anionic polymerization is challenged by its base susceptibility. In this study, a two-component organocatalyst shows strict epoxy-selectivity in the anionic ring-opening polymerization (ROP) of commercially available tert-butyldimethylsilyl (R)-(-)-glycidyl ether (TBSGE). The silyl ether pendant groups are fully preserved in the resultant polyether and readily undergo acidic hydrolysis to yield well-defined linear polyglycerol (PGC). Combination of the ROP with mechanistically distinct polymerization chemistries delivers PGC-based polyurethane and a hybrid amphiphilic block copolymer. The SuFEx reaction with sulfonyl fluoride shows effective tuning of polyTBSGE into a sulfonate-functionalized polyether. We have thus exploited the chemoselectivity of organocatalysis to facilitate access to polymers carrying reactive pendant functionalities.

11.
J Sci Food Agric ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877788

RESUMEN

This overview summarizes the latest research progress on the aroma absorption mechanism and aroma fixation pathway of jasmine green tea, and discusses in depth the aroma absorption mechanism of green tea, the aroma release mechanism of jasmine flowers, as well as the absorption and fixation mechanism of the aroma components of jasmine green tea in the process of scenting, to provide a theoretical basis for the improvement of the quality of jasmine green tea and the innovation of processing technology. It was found that the aroma absorption mechanism of jasmine green tea is mainly associated with both physical and chemical adsorption, aroma release in jasmine involves the phenylpropanoid/benzoin biosynthetic pathway, ß-glycosidase enzymes interpreting putative glycosidic groups, and heat shock proteins (HSPs) as molecular chaperones to prevent stress damage in postharvest flowers due to high temperatures and to promote the release of aroma components, and so forth. The preparation of aroma-protein nano-complexes, heat stress microcapsules, and the spraying of polymeric substances - ß-cyclodextrin are three examples of aroma-fixing pathways. This overview also summarizes the problems and future development trends of the current research and proposes the method of loading benzyl acetate, the main aroma component of jasmine, through konjac glucomannan (KGM)-based gel to solve the problem of volatile aroma and difficult-to-fix aroma, which provides a reference for the sustainable development of the jasmine green tea industry. © 2024 Society of Chemical Industry.

12.
Signal Transduct Target Ther ; 9(1): 111, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735995

RESUMEN

CRISPR‒Cas7-11 is a Type III-E CRISPR-associated nuclease that functions as a potent RNA editing tool. Tetratrico-peptide repeat fused with Cas/HEF1-associated signal transducer (TPR-CHAT) acts as a regulatory protein that interacts with CRISPR RNA (crRNA)-bound Cas7-11 to form a CRISPR-guided caspase complex (Craspase). However, the precise modulation of Cas7-11's nuclease activity by TPR-CHAT to enhance its utility requires further study. Here, we report cryo-electron microscopy (cryo-EM) structures of Desulfonema ishimotonii (Di) Cas7-11-crRNA, complexed with or without the full length or the N-terminus of TPR-CHAT. These structures unveil the molecular features of the Craspase complex. Structural analysis, combined with in vitro nuclease assay and electrophoretic mobility shift assay, reveals that DiTPR-CHAT negatively regulates the activity of DiCas7-11 by preventing target RNA from binding through the N-terminal 65 amino acids of DiTPR-CHAT (DiTPR-CHATNTD). Our work demonstrates that DiTPR-CHATNTD can function as a small unit of DiCas7-11 regulator, potentially enabling safe applications to prevent overcutting and off-target effects of the CRISPR‒Cas7-11 system.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Sistemas CRISPR-Cas/genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
13.
PLoS Biol ; 22(5): e3002628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814940

RESUMEN

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Asunto(s)
Adenosina Trifosfato , División Celular , Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Hidrólisis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Pared Celular/metabolismo , Conformación Proteica , Modelos Moleculares , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas de la Membrana Bacteriana Externa , Transportadoras de Casetes de Unión a ATP , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Lipoproteínas , Proteínas de Ciclo Celular
15.
J Agric Food Chem ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613496

RESUMEN

Unsaturated fatty acids present in fish oil offer various physiological benefits to the human body. However, their susceptibility to oxidation severely limits their potential applications. The purpose of this study was to develop Pickering emulsions stabilized from a composite of resveratrol-loaded gliadin nanoparticles and oxidized chitin nanocrystals (GR/OC) to protect fish oil from oxidation. The effects of the GR/OC composite on the characterizations of fish oil Pickering emulsions were investigated, including the microstructure, physicochemical properties (stability and rheological behavior), and digestion properties in vitro. The results revealed that an increased concentration of the GR/OC composite significantly reduced the droplet size and improved the ambient stability of the emulsions (in terms of pH, ionic strength, temperature, and storage time). Confocal laser scanning microscopy images depicted that the GR/OC nanoparticles were uniformly dispersed at the interface between water and fish oil (W-O interface). This distribution formed a protective envelope around the droplets. Remarkably, the addition of 2% GR/OC nanoparticles stabilized the Pickering emulsions and showed the most positive effect on the antioxidant capacity compared to that of the control group. These stabilized emulsions maintained lower peroxide values and acid values, which were 1.5 times less than those of the blank control during the 14 day accelerated oxidation experiment. Furthermore, the Pickering emulsions stabilized by GR/OC nanoparticles exhibited the ability to protect fish oil from contamination by gastric juices and facilitate the intestinal absorption of omega-3 polyunsaturated fatty acids. The findings suggest that these GR/OC-stabilized Pickering emulsions offer a promising alternative for delivering fish oils in various industries, including the food industry.

16.
Nat Commun ; 15(1): 3491, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664439

RESUMEN

Porous carbons with concurrently high specific surface area and electronic conductivity are desirable by virtue of their desirable electron and ion transport ability, but conventional preparing methods suffer from either low yield or inferior quality carbons. Here we developed a lithiothermal approach to bottom-up synthesize highly meso-microporous graphitized carbon (MGC). The preparation can be finished in a few milliseconds by the self-propagating reaction between polytetrafluoroethylene powder and molten lithium (Li) metal, during which instant ultra-high temperature (>3000 K) was produced. This instantaneous carbon vaporization and condensation at ultra-high temperatures and in ultra-short duration enable the MGC to show a highly graphitized and continuously cross-coupled open pore structure. MGC displays superior electrochemical capacitor performance of exceptional power capability and ultralong-term cyclability. The processes used to make this carbon are readily scalable to industrial levels.

17.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589823

RESUMEN

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Asunto(s)
Glucosafosfato Deshidrogenasa , Músculo Liso Vascular , Canal Aniónico 1 Dependiente del Voltaje , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Becaplermina/genética , Becaplermina/metabolismo , Proliferación Celular , Proteína X Asociada a bcl-2/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Músculo Liso Vascular/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neointima/genética , Neointima/metabolismo , Neointima/patología , Apoptosis , Miocitos del Músculo Liso/metabolismo , Movimiento Celular/genética , Células Cultivadas , Fenotipo
18.
Int J Biol Macromol ; 266(Pt 1): 131250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556241

RESUMEN

In recent years, the application of biopolymer-based nanofibers prepared via microfluidic blow spinning (MBS) for food packaging has continuously increased due to their advantages of biocompatibility, biodegradability, and safety. However, the poor spinnability, undesirable water barrier capacity, and loss of antibacterial and antioxidant properties of biopolymer-based nanofibers strictly restrict their real-world applications. In this work, carvacrol (CV) incorporated konjac glucomannan (KGM)/polylactic acid (PLA) nanofibrous films (KP-CV) were produced by MBS. The FTIR spectra and XRD analysis revealed the hydrogen bonding interactions among CV, PLA, and KGM, thus significantly improving the TS of KP-CV nanofibrous films from 0.23 to 1.27 MPa with increased content of CV from 0 % to 5 %. Besides, KP-CV nanofibrous films showed improved thermal stability, excellent hydrophobicity (WCA: 128.19°, WVP: 1.02 g mm/m2 h kPa), and sustained release of CV combined with good antioxidant activities (DPPH radical scavenging activity: 77.51 ± 1.57 %), and antibacterial properties against S. aureus (inhibition zone: 26.33 mm) and E. coli (inhibition zone: 22.67 mm). Therefore, as prepared KP-CV nanofibrous films can be potentially applied as packaging materials for the extended shelf life of cherry tomatoes.


Asunto(s)
Antioxidantes , Cimenos , Embalaje de Alimentos , Mananos , Nanofibras , Poliésteres , Embalaje de Alimentos/métodos , Mananos/química , Poliésteres/química , Cimenos/química , Cimenos/farmacología , Nanofibras/química , Antioxidantes/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Interacciones Hidrofóbicas e Hidrofílicas , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
19.
J Asthma ; : 1-14, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38478043

RESUMEN

Objective: In a previous study we have shown that, in the presence of interleukin (IL)-33, repeated, per-nasal challenge of murine airways with Streptococcus pneumoniae (S. pneumoniae) organisms induces human asthma-like airways inflammation. It is not clear, however, whether this effect is unique or manifest in response to other common respiratory pathogens.Methods: To explore this, airways of BALB/c mice were repeatedly challenged per-nasally with formaldehyde-inactivated bacterial bodies in the presence or absence of murine recombinant IL-33. Serum concentrations of S.pneumoniae, Moraxella catarrhalis (M.catarrhalis) and Haemophilus influenzae (H.influenzae) lysates-specific IgE were measured in patients with asthma and control subjects.Results: We showed that in the presence of IL-33, repeated, per-nasal airways exposure to the bodies of these bacteria induced airways hyperresponsiveness (AHR) in the experimental mice. This was accompanied by cellular infiltration into bronchoalveolar lavage fluid (BALF), eosinophilic infiltration and mucous hypertrophy of the lung tissue, with elevated local expression of some type 2 cytokines and elevated, specific IgG and IgE in the serum. The precise characteristics of the inflammation evoked by exposure to each bacterial species were distinguishable.Conclusions: These results suggest that in the certain circumstances, inhaled or commensal bacterial body antigens of both Gram-positive (S. pneumoniae) and Gram-negative (M. catarrhalis and H. influenzae) respiratory tract bacteria may initiate type 2 inflammation typical of asthma in the airways. In addition, we demonstrated that human asthmatic patients manifest elevated serum concentrations of M.catarrhalis- and H.influenzae-specific IgE.

20.
Immunol Invest ; 53(4): 559-573, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329469

RESUMEN

OBJECTIVE: Neuropsychiatric systemic lupus erythematosus (NPSLE) is a form of SLE associated with severe NP syndromes causing mortality and morbidity. Respecting the fundamental of BAFF in NPSLE pathophysiology, we investigated its clinical value. METHODS: Totally 105 NPSLE and 101 SLE cases without NPSLE (non-NPSLE, control) were included. Serum BAFF/TNF-α/IL-6/IL-10 levels were measured using ELISA kits. T lymphocytes were detected by flow cytometry. The independent influencing factors for NPSLE, and the auxiliary diagnostic efficacy and the ability of BAFF levels to predict adverse prognosis of NPSLE patients were analyzed by multiple factor logistic regression, and ROC curve and survival curve. RESULTS: In NPSLE patients, serum BAFF level was increased and positively correlated with SLEDAI-2k, serum proinflammatory cytokines, while negatively correlated with CD4+T/CD8+T cells, and anti-inflammatory cytokine. High serum BAFF protein level was associated with a higher risk of developing NPSLE. The AUC of serum BAFF > 301.7 assisting in NPSLE diagnosis was 0.8196. Furthermore, high levels of serum BAFF were associated with a higher risk of adverse outcomes in NPSLE patients. . CONCLUSION: Serum BAFF level in NPSLE patients was correlated with lymphocytes and high serum BAFF protein level could assist in diagnosis and to predict adverse outcomes in NPSLE patients.


Asunto(s)
Factor Activador de Células B , Vasculitis por Lupus del Sistema Nervioso Central , Humanos , Factor Activador de Células B/sangre , Femenino , Masculino , Vasculitis por Lupus del Sistema Nervioso Central/inmunología , Vasculitis por Lupus del Sistema Nervioso Central/sangre , Vasculitis por Lupus del Sistema Nervioso Central/diagnóstico , Adulto , Persona de Mediana Edad , Biomarcadores/sangre , Pronóstico , Citocinas/sangre , Inflamación/sangre , Inflamación/inmunología , Inflamación/diagnóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...