Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Exp Neurol ; 379: 114853, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866102

RESUMEN

The activation of glial cells is intimately associated with the pathophysiology of neuroinflammation and white matter injury (WMI) during both acute and chronic phases following subarachnoid hemorrhage (SAH). The complement C3a receptor (C3aR) has a dual role in modulating inflammation and contributes to neurodevelopment, neuroplasticity, and neurodegeneration. However, its impact on WMI in the context of SAH remains unclear. In this study, 175 male C57BL/6J mice underwent SAH through endovascular perforation. Oxyhemoglobin (oxy-Hb) was employed to simulate SAH in vitro. A suite of techniques, including immunohistochemistry, transcriptomic sequencing, and a range of molecular biotechnologies, were utilized to evaluate the activation of the C3-C3aR pathway on microglial polarization and WMI. Results revealed that post-SAH abnormal activation of microglia was accompanied by upregulation of complement C3 and C3aR. The inhibition of C3aR decreased abnormal microglial activation, attenuated neuroinflammation, and ameliorated WMI and cognitive deficits following SAH. RNA-Seq indicated that C3aR inhibition downregulated several immune and inflammatory pathways and mitigated cellular injury by reducing p53-induced death domain protein 1 (Pidd1) and Protein kinase RNA-like ER kinase (Perk) expression, two factors mainly function in sensing and responding to cellular stress and endoplasmic reticulum (ER) stress. The deleterious effects of the C3-C3aR axis in the context of SAH may be related to endoplasmic reticulum (ER) stress-dependent cellular injury and inflammasome formation. Agonists of Perk can exacerbate the cellular injury and neuroinflammation, which was attenuated by C3aR inhibition after SAH. Additionally, intranasal administration of C3a during the subacute phase of SAH was found to decrease astrocyte reactivity and alleviate cognitive deficits post-SAH. This research deepens our understanding of the complex pathophysiology of WMI following SAH and underscores the therapeutic potential of C3a treatment in promoting white matter repair and enhancing functional recovery prognosis. These insights pave the way for future clinical application of C3a-based therapies, promising significant benefits in the treatment of SAH and its related complications.

3.
Cell Metab ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38906140

RESUMEN

Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.

4.
World Neurosurg ; 189: 77-88, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38789033

RESUMEN

Subarachnoid hemorrhage (SAH) is recognized as an especially severe stroke variant, notorious for its high mortality and long-term disability rates, in addition to a range of both immediate and enduring neurologic impacts. Over half of the SAH survivors experience varying degrees of neurologic disorders, with many enduring chronic neuropsychiatric conditions. Due to the limitations of traditional imaging techniques in depicting subtle changes within brain tissues posthemorrhage, the accurate detection and diagnosis of white matter (WM) injuries are complicated. Against this backdrop, diffusion tensor imaging (DTI) has emerged as a promising biomarker for structural imaging, renowned for its enhanced sensitivity in identifying axonal damage. This capability positions DTI as an invaluable tool for forming precise and expedient prognoses for SAH survivors. This study synthesizes an assessment of DTI for the diagnosis and prognosis of neurologic dysfunctions in patients with SAH, emphasizing the notable changes observed in DTI metrics and their association with potential pathophysiological processes. Despite challenges associated with scanning technology differences and data processing, DTI demonstrates significant clinical potential for early diagnosis of cognitive impairments following SAH and monitoring therapeutic effects. Future research requires the development of highly standardized imaging paradigms to enhance diagnostic accuracy and devise targeted therapeutic strategies for SAH patients. In sum, DTI technology not only augments our understanding of the impact of SAH but also may offer new avenues for improving patient prognoses.

6.
Exp Neurol ; 373: 114656, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38114054

RESUMEN

Studies have reported that Prosaposin (PSAP) is neuroprotective in cerebrovascular diseases. We hypothesized that PSAP would reduce infarct volume by attenuating neuronal apoptosis and promoting cell survival through G protein-coupled receptor 37(GPR37)/PI3K/Akt/ASK1 pathway in middle cerebral artery occlusion (MCAO) rats. Two hundred and thirty-five male and eighteen female Sprague-Dawley rats were used. Recombinant human PSAP (rPSAP) was administered intranasally 1 h (h) after reperfusion. PSAP small interfering ribonucleic acid (siRNA), GPR37 siRNA, and PI3K specific inhibitor LY294002 were administered intracerebroventricularly 48 h before MCAO. Infarct volume, neurological score, immunofluorescence staining, Western blot, Fluoro-Jade C (FJC) and TUNEL staining were examined. The expression of endogenous PSAP and GPR37 were increased after MCAO. Intranasal administration of rPSAP reduced brain infarction, neuronal apoptosis, and improved both short- and long-term neurological function. Knockdown of endogenous PSAP aggravated neurological deficits. Treatment with exogenous rPSAP increased PI3K expression, Akt and ASK1 phosphorylation, and Bcl-2 expression; phosphorylated-JNK and Bax levels were reduced along with the number of FJC and TUNEL positive neurons. GPR37 siRNA and LY294002 abolished the anti-apoptotic effect of rPSAP at 24 h after MCAO. In conclusion, rPSAP attenuated neuronal apoptosis and improved neurological function through GPR37/PI3K/Akt/ASK1 pathway after MCAO in rats. Therefore, further exploration of PSAP as a potential treatment option in ischemic stroke is warranted.


Asunto(s)
Fármacos Neuroprotectores , Proteínas Proto-Oncogénicas c-akt , Ratas , Masculino , Femenino , Humanos , Animales , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Saposinas/metabolismo , Saposinas/farmacología , Saposinas/uso terapéutico , Transducción de Señal , Administración Intranasal , Apoptosis , ARN Interferente Pequeño/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
7.
J Neurochem ; 166(2): 280-293, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37309616

RESUMEN

Neuroinflammation has been reported to be associated with white matter injury (WMI) after subarachnoid hemorrhage (SAH). As the main resident immune cells of the brain, microglia can be activated into proinflammatory and anti-inflammatory phenotypes. Toll-like receptor 4 (TLR4), expressed on the surface of the microglia, plays a key role in microglial inflammation. However, the relationship between TLR4, microglial polarization, and WMI following SAH remains unclear. In this study, a total of 121 male adult C57BL/6 wild-type (WT) mice, 20 WT mice at postnatal day 1 (P1), and 41 male adult TLR4 gene knockout (TLR4-/-) mice were used to investigate the potential role of TLR4-induced microglial polarization in early WMI after SAH by radiological, histological, microstructural, transcriptional, and cytological evidence. The results indicated that microglial inflammation was associated with myelin loss and axon damage, shown as a decrease in myelin basic protein (MBP), as well as increase in degraded myelin basic protein (dMBP) and amyloid precursor protein (APP). Gene knockout of TLR4 revised microglial polarization toward the anti-inflammatory phenotype and protected the white matter at an early phase after SAH (24 h), as shown through reduction of toxic metabolites, preservation of myelin, reductions in APP accumulation, reductions in white matter T2 hyperintensity, and increases in FA values. Cocultures of microglia and oligodendrocytes, the cells responsible for myelin production and maintenance, were established to further elucidate the relationship between microglial polarization and WMI. In vitro, TLR4 inhibition decreased the expression of microglial MyD88 and phosphorylated NF-κB, thereby inhibiting M1 polarization and mitigating inflammation. Decrease in TLR4 in the microglia increased preservation of neighboring oligodendrocytes. In conclusion, microglial inflammation has dual effects on early WMI after experimental SAH. Future explorations on more clinically relevant methods for modulating neuroinflammation are warranted to combat stroke with both WMI and gray matter destruction.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Sustancia Blanca , Ratones , Animales , Masculino , Microglía/metabolismo , Hemorragia Subaracnoidea/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína Básica de Mielina/metabolismo , Proteína Básica de Mielina/farmacología , Sustancia Blanca/patología , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Inflamación/patología , Lesiones Encefálicas/patología , Antiinflamatorios/farmacología
8.
J Neurotrauma ; 40(15-16): 1779-1795, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37078148

RESUMEN

Traumatic brain injury (TBI) affects persons of all ages and is recognized as a major cause of death and disability worldwide; it also brings heavy life burden to patients and their families. The treatment of those with secondary injury after TBI is still scarce, however. Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism associated with various physiological processes, while the contribution of AS in treatment after TBI is poorly illuminated. In this study, we performed and analyzed the transcriptome and proteome datasets of brain tissue at multiple time points in a controlled cortical impact (CCI) mouse model. We found that AS, as an independent change against the transcriptional level, is a novel mechanism linked to cerebral edema after TBI. Bioinformatics analysis further indicated that the transformation of splicing isoforms after TBI was related to cerebral edema. Accordingly, we found that the fourth exon of transient receptor potential channel melastatin 4 (Trpm4) abrogated skipping at 72 h after TBI, resulting in a frameshift of the encoded amino acid and an increase in the proportion of spliced isoforms. Using magnetic resonance imaging (MRI), we have shown the numbers of 3nEx isoforms of Trpm4 may be positively correlated with volume of cerebral edema. Thus alternative splicing of Trpm4 becomes a noteworthy mechanism of potential influence on edema. In summary, alternative splicing of Trpm4 may drive cerebral edema after TBI. Trpm4 is a potential therapeutic targeting cerebral edema in patients with TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Canales Catiónicos TRPM , Ratones , Animales , Edema Encefálico/genética , Edema Encefálico/tratamiento farmacológico , Empalme Alternativo/genética , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/patología , Isoformas de Proteínas/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
9.
BMC Neurol ; 23(1): 33, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690936

RESUMEN

BACKGROUND: Primary familial brain calcification (PFBC), habitually called Fahr's disease, is characterized by bilateral calcification of the basal ganglia, accompanied by extensive calcification of the cerebellar dentate nucleus, brainstem cerebrum, and cerebellum at the grey-white matter junction. However, there are few reports about PFBC with aneurysmal subarachnoid hemorrhage (aSAH) and thalassemia. CASE PRESENTATION: We describe a patient admitted to the hospital with an acute deterioration in the level of consciousness with no history of neuropsychiatric features or movement disorders. After computed tomography (CT) and CT angiography (CTA), the patient was diagnosed with PFBC, accompanied by aneurysmal subarachnoid haemorrhage (aSAH), intracranial haemorrhage (ICH), and hemoglobin electrophoresis suggested beta-thalassemia. This patient underwent craniotomy aneurysm clipping and intracranial hematoma removal. CONCLUSIONS: For patients with PFBC, we should pay attention to their blood pressure and intracranial vascular conditions. The CTA is necessary to clarify the cerebrovascular conditions of the patient, especially when combined with hypertension and persistent headache or other related prodromal symptoms of cerebrovascular disease.


Asunto(s)
Enfermedades de los Ganglios Basales , Trastornos Cerebrovasculares , Hemorragia Subaracnoidea , Talasemia beta , Humanos , Hemorragia Subaracnoidea/complicaciones , Talasemia beta/complicaciones , Enfermedades de los Ganglios Basales/diagnóstico , Trastornos Cerebrovasculares/complicaciones , Ganglios Basales
10.
Front Neurosci ; 16: 981726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312038

RESUMEN

A wide plethora of intervention procedures, tissue plasminogen activators, mechanical thrombectomy, and several neuroprotective drugs were reported in stroke research over the last decennium. However, against this vivid background of newly emerging pieces of evidence, there is little to no advancement in the overall functional outcomes. With the advancement of epigenetic tools and technologies associated with intervention medicine, stroke research has entered a new fertile. The stroke involves an overabundance of inflammatory responses arising in part due to the body's immune response to brain injury. Neuroinflammation contributes to significant neuronal cell death and the development of functional impairment and even death in stroke patients. Recent studies have demonstrated that epigenetics plays a key role in post-stroke conditions, leading to inflammatory responses and alteration of the microenvironment within the injured tissue. In this review, we summarize the progress of epigenetics which provides an overview of recent advancements on the emerging key role of secondary brain injury in stroke. We also discuss potential epigenetic therapies related to clinical practice.

11.
Oxid Med Cell Longev ; 2022: 6422202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035227

RESUMEN

Background: Recent cerebrovascular recanalization therapy clinical trials have validated delayed recanalization in patients outside of the conventional window. However, a paucity of information on the pathophysiology of delayed recanalization and favorable outcomes remains. Since macrophages are extensively studied in tissue repair, we anticipate that they may play a critical role in delayed recanalization after ischemic stroke. Methods: In adult male Sprague-Dawley rats, two ischemic stroke groups were used: permanent middle cerebral artery occlusion (pMCAO) and delayed recanalization at 3 days following middle cerebral artery occlusion (rMCAO). To evaluate outcome, brain morphology, neurological function, macrophage infiltration, angiogenesis, and neurodegeneration were reported. Confirming the role of macrophages, after their depletion, we assessed angiogenesis and neurodegeneration after delayed recanalization. Results: No significant difference was observed in the rate of hemorrhage or animal mortality among pMCAO and rMCAO groups. Delayed recanalization increased angiogenesis, reduced infarct volumes and neurodegeneration, and improved neurological outcomes compared to nonrecanalized groups. In rMCAO groups, macrophage infiltration contributed to increased angiogenesis, which was characterized by increased vascular endothelial growth factor A and platelet-derived growth factor B. Confirming these links, macrophage depletion reduced angiogenesis, inflammation, neuronal survival in the peri-infarct region, and favorable outcome following delayed recanalization. Conclusion: If properly selected, delayed recanalization at day 3 postinfarct can significantly improve the neurological outcome after ischemic stroke. The sanguineous exposure of the infarct/peri-infarct to macrophages was essential for favorable outcomes after delayed recanalization at 3 days following ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Macrófagos , Masculino , Ratas , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular
12.
Exp Neurol ; 357: 114171, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35870523

RESUMEN

Targeting microglial activation has been shown to ameliorate early brain injury (EBI) after subarachnoid hemorrhage (SAH). Ferroptosis is a new form of programmed cell death after SAH, but these molecular features were not recognized as evidence of microglial function so far. In this study, we constructed microglial S100A8-specific knockdown and established the SAH model in vivo and in vitro. Multi-technology strategies, including high throughput sequencing, adeno-associated virus gene gene-editing and several molecular biotechnologies to validate the effects of S100A8 on microglial autophagy and ferroptosis after SAH. Our results revealed that the expression of S100A8 was significantly increased in brain tissue after SAH. Targeted microglial S100A8 inhibition improved neural function and neuronal apoptosis in mice after SAH. Further mechanism exploration found that favourable effects of S100A8 depletion in EBI may be through the inhibition of microglia autophagy-dependent ferroptosis. In conclusion, S100A8 may be a potential intervention target for microglial ferroptosis in EBI after SAH.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hemorragia Subaracnoidea , Animales , Autofagia , Lesiones Encefálicas/metabolismo , Ratones , Microglía/metabolismo , Hemorragia Subaracnoidea/metabolismo
13.
Oxid Med Cell Longev ; 2022: 3335887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528523

RESUMEN

In ischemic stroke (IS), accumulation of the misfolded proteins in the endoplasmic reticulum (ER) and mitochondria-induced oxidative stress (OS) has been identified as the indispensable inducers of secondary brain injury. With the increasing recognition of an association between ER stress and OS with ischemic stroke and with the improved understanding of the underlying molecular mechanism, novel targets for drug therapy and new strategies for therapeutic interventions are surfacing. This review discusses the molecular mechanism underlying ER stress and OS response as both causes and consequences of ischemic stroke. We also summarize the latest advances in understanding the importance of ER stress and OS in the pathogenesis of ischemic stroke and discuss potential strategies and clinical trials explicitly aiming to restore mitochondria and ER dynamics after IS.


Asunto(s)
Accidente Cerebrovascular Isquémico , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Humanos , Mitocondrias/metabolismo , Transducción de Señal/fisiología
14.
Appl Intell (Dordr) ; : 1-17, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36618120

RESUMEN

Geo-sensory time series, such as the air quality and water distribution, are collected from numerous sensors at different geospatial locations in the same time interval. Each sensor monitors multiple parameters and generates multivariate time series. These time series change over time and vary geographically; hence, geo-sensory time series contain multi-scale spatial-temporal correlations, namely inter-sensor spatial-temporal correlations and intra-sensor spatial-temporal correlations. To capture spatial-temporal correlations, although various deep learning models have been developed, few of the models focus on capturing both correlations. To solve this problem, we propose simultaneously capture the inter- and intra-sensor spatial-temporal correlations by designing a joint network of non-linear graph attention and temporal attraction force(J-NGT) consisting two graph attention mechanisms. The non-linear graph attention mechanism can characterize node affinities for adaptively selecting the relevant exogenous series and relevant sensor series. The temporal attraction force mechanism can weigh the effect of past values on current values to represent the temporal correlation. To prove the superiority and effectiveness of our model, we evaluate our model in three real-world datasets from different fields. Experimental results show that our model can achieve better prediction performance than eight state-of-the-art models, including statistical models, machine learning models, and deep learning models. Furthermore, we conducted experiments to capture inter- and intra-sensor spatial-temporal correlations. Experimental results indicate that our model significantly improves performance by capturing both inter- and intra-sensor spatial-temporal correlations. This fully shows that our model has a greater advantage in geo-sensory time series prediction.

15.
Front Neurol ; 12: 728984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744970

RESUMEN

Arterial hypertension is considered the most prevalent risk factor for stroke. Both pathophysiologic and clinical data previously acquired suggest a strong correlation between the hemodynamic nature of arterial hypertension and an increase in the risk of ischemic insult to tissues. However, the knowledge of specific molecular interactions between hypertension and ischemic stroke (IS) is limited. In this study, we performed systematic bioinformatics analysis of stroke-prone spontaneous hypertensive brain tissue samples of rats (GSE41452), middle cerebral artery occlusion of brain tissue samples of rats (GSE97537), and peripheral blood array data of IS patients (GSE22255). We identified that Fos, an immediate-early gene (IEG) that responds to alterations in arterial blood pressure, has a strong correlation with the occurrence and prognosis of IS. To further evaluate the potential function of Fos, the oxygen-glucose deprivation model and RNA sequencing of HT22 neuronal cells were performed. Consistent with the sequencing results, real-time quantitative PCR and Western blot indicate that Fos was elevated at 3 h and returned to normal levels at 6 h after oxygen-glucose deprivation. Knock-down of Fos by lentivirus significantly increased the oxidative stress level, neuronal apoptosis, and inhibited the mitochondrial function. In conclusion, Fos acts as an important link between hypertension and IS. Furthermore, Fos can be used as a potential biomarker for target therapy in the prevention of stroke among hypertensive patients and also potential treatment targeting apoptosis and oxidative stress after its onset.

16.
Oxid Med Cell Longev ; 2021: 3823122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790286

RESUMEN

BACKGROUND: Circular RNA phosphorylase kinase regulatory subunit alpha 2 (circPHKA2; hsa_circ_0090002) has a significantly, specifically different expression in acute ischemic stroke (AIS) patients' blood. Here, we intended to investigate the role and mechanism of circPHKA2 in oxygen-glucose deprivation- (OGD-) induced stoke model in human brain microvascular endothelial cells (HBMEC). METHODS: Expression of circPHKA2, microRNA- (miR-) 574-5p, and superoxide dismutase-2 (SOD2) was detected by quantitative PCR and western blotting. Cell injury was measured by detecting cell proliferation (EdU assay and CCK-8 assay), migration (transwell assay), neovascularization (tube formation assay), apoptosis (flow cytometry and western blotting), endoplasmic reticulum stress (western blotting), and oxidative stress (assay kits). Direct intermolecular interaction was determined by bioinformatics algorithms, dual-luciferase reporter assay, biotin-labelled miRNA capture, and argonaute 2 RNA immunoprecipitation. RESULTS: circPHKA2 was downregulated in AIS patients' blood in SOD2-correlated manner. Reexpressing circPHKA2 rescued EdU incorporation, cell viability and migration, tube formation, B cell lymphoma-2 (Bcl-2) expression, and SOD activity of OGD-induced HBMEC and alleviate apoptotic rate and levels of Bcl-2-associated protein (Bax), glucose-regulated protein 78 kD (GRP78), C/EBP-homologous protein (CHOP), caspase-12, reactive oxygen species (ROS), and malondialdehyde (MDA). Additionally, blocking SOD2 partially attenuated these roles of circPHKA2 overexpression. Molecularly, circPHKA2 upregulated SOD2 expression via interacting with miR-574-5p, and miR-574-5p could target SOD2. Similarly, allied to neurovascular protection of circPHKA2 was the downregulation of miR-574-5p. CONCLUSION: circPHKA2 could protect HBMEC against OGD-induced cerebral stroke model via the miR-574-5p/SOD2 axis, suggesting circPHKA2 as a novel and promising candidate in ischemic brain injury.


Asunto(s)
Endotelio Vascular/metabolismo , Glucosa/deficiencia , Hipoxia/complicaciones , Accidente Cerebrovascular Isquémico/terapia , MicroARNs/genética , Fosforilasa Quinasa/genética , ARN Circular/administración & dosificación , Superóxido Dismutasa/metabolismo , Estudios de Casos y Controles , Endotelio Vascular/patología , Regulación de la Expresión Génica , Humanos , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , ARN Circular/genética , Superóxido Dismutasa/genética
17.
Front Neurol ; 12: 726520, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566870

RESUMEN

Background: The occurrence of microthrombosis contributes to not only delayed cerebral ischemia (DCI), but also early brain injury (EBI) after SAH. However, the underlying mechanism is not completely investigated. In the current study, we explored the underlying mechanism of microthrombosis in EBI stage after SAH in ApoE-deficient mice. Methods: Experimental SAH was established by endovascular perforation in apolipoprotein E (ApoE)-deficient mice and wild type (WT) mice. Neurobehavioral, molecular biological and histopathological methods were used to assess the relationship between pericytes loss, neurobehavioral performance, and microthrombosis. Results: We found that the number of microthrombi was significantly increased and peaked 48 h after SAH in WT mice. The increased microthrombosis was related to the decreased effective microcirculation perfusion area and EBI severity. ApoE-deficient mice showed more extensive microthrombosis than that of WT mice 48 h after SAH, which was thereby associated with greater neurobehavioral deficits. Immunohistochemical staining showed that microthrombi were predominantly located in microvessels where pericytes coverage was absent. Mechanistically, ApoE deficiency caused more extensive CypA-NF-κB-MMP-9 pathway activation than that observed in WT mice, which thereby led to more degradation of N-cadherin, and subsequently more pericytes loss. Thereafter, the major adhesion molecule that promoting microthrombi formation in microvessels, P-selectin, was considerably increased in WT mice and increased to a greater extent in the ApoE-deficient mice. Conclusion: Taken together, these data suggest that pericytes loss is associated with EBI after SAH through promoting microthrombosis. Therapies that target ApoE to reduce microthrombosis may be a promising strategy for SAH treatment.

18.
Front Aging Neurosci ; 13: 640215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613273

RESUMEN

Subarachnoid hemorrhage (SAH) is a devastating form of stroke, which poses a series of intractable challenges to clinical practice. Imbalance of mitochondrial homeostasis has been thought to be the crucial pathomechanism in early brain injury (EBI) cascade after SAH. Irisin, a protein related to metabolism and mitochondrial homeostasis, has been reported to play pivotal roles in post-stroke neuroprotection. However, whether this myokine can exert neuroprotection effects after SAH remains unknown. In the present study, we explored the protective effects of irisin and the underlying mechanisms related to mitochondrial biogenesis in a SAH animal model. Endovascular perforation was used to induce SAH, and recombinant irisin was administered intracerebroventricularly. Neurobehavioral assessments, TdT-UTP nick end labeling (TUNEL) staining, dihydroethidium (DHE) staining, immunofluorescence, western blot, and transmission electron microscopy (TEM) were performed for post-SAH assessments. We demonstrated that irisin treatment improved neurobehavioral scores, reduced neuronal apoptosis, and alleviated oxidative stress in EBI after SAH. More importantly, the administration of exogenous irisin conserved the mitochondrial morphology and promoted mitochondrial biogenesis. The protective effects of irisin were partially reversed by the mitochondrial uncoupling protein-2 (UCP-2) inhibitor. Taken together, irisin may have neuroprotective effects against SAH via improving the mitochondrial biogenesis, at least in part, through UCP-2 related targets.

19.
Oxid Med Cell Longev ; 2020: 4717258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31998437

RESUMEN

Oxidative stress and neuroinflammation play essential roles in ischemic stroke-induced brain injury. Previous studies have reported that Ezetimibe (Eze) exerts antioxidative stress and anti-inflammatory properties in hepatocytes. In the present study, we investigated the effects of Eze on oxidative stress and neuroinflammation in a rat middle cerebral artery occlusion (MCAO) model. One hundred and ninety-eight male Sprague-Dawley rats were used. Animals assigned to MCAO were given either Eze or its control. To explore the downstream signaling of Eze, the following interventions were given: AMPK inhibitor dorsomorphin and nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA. Intranasal administration of Eze, 1 h post-MCAO, further increased the endogenous p-AMPK expression, reducing brain infarction, neurologic deficits, neutrophil infiltration, microglia/macrophage activation, number of dihydroethidium- (DHE-) positive cells, and malonaldehyde (MDA) levels. Specifically, treatment with Eze increased the expression of p-AMPK, Nrf2, and HO-1; Romo-1, thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), Cleaved Caspase-1, and IL-1ß were reduced. Dorsomorphin and Nrf2 siRNA reversed the protective effects of Eze. In summary, Eze decreases oxidative stress and subsequent neuroinflammation via activation of the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Therefore, Eze may be a potential therapeutic approach for ischemic stroke patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ezetimiba/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratas , Ratas Sprague-Dawley
20.
Stem Cells Dev ; 29(9): 562-573, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918626

RESUMEN

Subarachnoid hemorrhage (SAH) is a life-threatening cerebrovascular disease with high rates of morbidity and mortality. Microglia, the resident immune cells of the central nervous system, are involved in initiating inflammatory response post-SAH through releasing a variety of inflammatory mediators. Regulation of neuroinflammation triggered by activated microglia has become a promising therapeutic strategy for SAH. Recent studies reported that bone marrow-derived mesenchymal stem cells (BM-MSCs) have therapeutic effects, resulting from the regulation of microglia activation and production of inflammatory cytokines post-SAH. However, the underlying molecular mechanisms of BM-MSCs in targeting microglia-mediated neuroinflammation after SAH are still unclear. In this study, we used murine microglia cell line BV2 treated with oxyhemoglobin (OxyHb) to mimic the SAH conditions in vitro. The results showed that BM-MSCs coculture modulated OxyHb-induced BV2 activation as well as polarization. We further implemented RNA-seq approaches to investigate differences in transcriptomes between OxyHb-stimulated BV2 cocultured with and without BM-MSCs. The RNA-seq results suggested that the levels of inflammatory genes were strongly altered when OxyHb-stimulated BV2 cells were cocultured with BM-MSCs. Moreover, we identified epigenetic regulators involved in the regulation of microglia-mediated inflammation by BM-MSCs. This study clarifies detailed transcriptomic mechanisms underlying the interaction between BM-MSCs and activated microglia and may lead to a new therapeutic strategy using stem cell therapy for SAH.


Asunto(s)
Médula Ósea/metabolismo , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Hemorragia Subaracnoidea/metabolismo , Transcriptoma/genética , Animales , Línea Celular , Técnicas de Cocultivo/métodos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Masculino , Ratones , Ratones Endogámicos C57BL , RNA-Seq/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...