Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
2.
Stem Cells Dev ; 33(7-8): 177-188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38386508

RESUMEN

Seipin deficiency is an important cause of type 2 Berardinelli-Seip congenital dyslipidemia (BSCL2). BSCL2 is a severe lipodystrophy syndrome with lack of adipose tissue, hepatic steatosis, insulin resistance, and normal or higher bone mineral density. Bone marrow mesenchymal stem cells (BMSCs) are believed to maintain bone and fat homeostasis by differentiating into osteoblasts and adipocytes. We aimed to explore the role of seipin in the osteogenic/adipogenic differentiation balance of BMSCs. Seipin loxP/loxP mice are used to explore metabolic disorders caused by seipin gene mutations. Compared with wild-type mice, subcutaneous fat deficiency and ectopic fat accumulation were higher in seipin knockout mice. Microcomputed tomography of the tibia revealed the increased bone content in seipin knockout mice. We generated seipin-deficient BMSCs in vitro and revealed that lipogenic genes are downregulated and osteogenic genes are upregulated in seipin-deficient BMSCs. In addition, peroxisome proliferator-activated receptor gamma (PPARγ) signaling is reduced in seipin-deficient BMSCs, while using the PPARγ activator increased the lipogenic differentiation and decreased osteogenic differentiation of seipin-deficient BMSCs. Our findings indicated that bone and lipid metabolism can be regulated by seipin through modulating the differentiation of mesenchymal stem cells. Thus, a new insight of seipin mutations in lipid metabolism disorders was revealed, providing a prospective strategy for MSC transplantation-based treatment of BSCL2.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP , Proteínas de Unión al GTP Heterotriméricas , Células Madre Mesenquimatosas , Animales , Ratones , Diferenciación Celular/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Noqueados , Osteogénesis/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Microtomografía por Rayos X
3.
Comput Biol Med ; 171: 108051, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335819

RESUMEN

Identifying complex associations between genetic variations and imaging phenotypes is a challenging task in the research of brain imaging genetics. The previous study has proved that neuronal oscillations within distinct frequency bands are derived from frequency-dependent genetic modulation. Thus it is meaningful to explore frequency-dependent imaging genetic associations, which may give important insights into the pathogenesis of brain disorders. In this work, the hypergraph-structured multi-task sparse canonical correlation analysis (HS-MTSCCA) was developed to explore the associations between multi-frequency imaging phenotypes and single-nucleotide polymorphisms (SNPs). Specifically, we first created a hypergraph for the imaging phenotypes of each frequency and the SNPs, respectively. Then, a new hypergraph-structured constraint was proposed to learn high-order relationships among features in each hypergraph, which can introduce biologically meaningful information into the model. The frequency-shared and frequency-specific imaging phenotypes and SNPs could be identified using the multi-task learning framework. We also proposed a useful strategy to tackle this algorithm and then demonstrated its convergence. The proposed method was evaluated on four simulation datasets and a real schizophrenia dataset. The experimental results on synthetic data showed that HS-MTSCCA outperforms the other competing methods according to canonical correlation coefficients, canonical weights, and cosine similarity. And the results on real data showed that HS-MTSCCA could obtain superior canonical coefficients and canonical weights. Furthermore, the identified frequency-shared and frequency-specific biomarkers could provide more interesting and meaningful information, demonstrating that HS-MTSCCA is a powerful method for brain imaging genetics.


Asunto(s)
Análisis de Correlación Canónica , Neuroimagen , Neuroimagen/métodos , Fenotipo , Algoritmos , Polimorfismo de Nucleótido Simple/genética , Encéfalo/diagnóstico por imagen
4.
Schizophr Bull ; 50(1): 187-198, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119525

RESUMEN

BACKGROUND AND HYPOTHESIS: Schizophrenia (SCZ) is associated with complex crosstalk between the gut microbiota and host metabolism, but the underlying mechanism remains elusive. Investigating the aberrant neurotransmitter processes reflected by alterations identified using multiomics analysis is valuable to fully explain the pathogenesis of SCZ. STUDY DESIGN: We conducted an integrative analysis of multiomics data, including the serum metabolome, fecal metagenome, single nucleotide polymorphism data, and neuroimaging data obtained from a cohort of 127 drug-naïve, first-episode SCZ patients and 92 healthy controls to characterize the microbiome-gut-brain axis in SCZ patients. We used pathway-based polygenic risk score (PRS) analyses to determine the biological pathways contributing to genetic risk and mediation effect analyses to determine the important neuroimaging features. Additionally, a random forest model was generated for effective SCZ diagnosis. STUDY RESULTS: We found that the altered metabolome and dysregulated microbiome were associated with neuroactive metabolites, including gamma-aminobutyric acid (GABA), tryptophan, and short-chain fatty acids. Further structural and functional magnetic resonance imaging analyses highlighted that gray matter volume and functional connectivity disturbances mediate the relationships between Ruminococcus_torgues and Collinsella_aerofaciens and symptom severity and the relationships between species Lactobacillus_ruminis and differential metabolites l-2,4-diaminobutyric acid and N-acetylserotonin and cognitive function. Moreover, analyses of the Polygenic Risk Score (PRS) support that alterations in GABA and tryptophan neurotransmitter pathways are associated with SCZ risk, and GABA might be a more dominant contributor. CONCLUSIONS: This study provides new insights into systematic relationships among genes, metabolism, and the gut microbiota that affect brain functional connectivity, thereby affecting SCZ pathogenesis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Esquizofrenia , Humanos , Triptófano , Esquizofrenia/genética , Multiómica , Encéfalo , Ácido gamma-Aminobutírico/metabolismo , Neurotransmisores/metabolismo , Neurotransmisores/farmacología
5.
Front Oncol ; 13: 1207536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675231

RESUMEN

Epithelioid angiomyolipoma (EAML) is a rare type of mesenchymal angiomyolipoma with potential malignancy in the kidney that can cause lymph node metastases, local recurrence, and distant metastases. Herein, we describe a case of EAML in the right kidney of a 51-year-old man who was admitted to the hospital with a right abdominal mass. Computed tomography revealed a heterogeneously enhanced mass with blurred margins, which was considered a malignant tumor. A radical nephrectomy was then performed. Two years later, the patient developed liver metastases from EAML and was administered sintilimab combined with bevacizumab. The patient survived after 6 months of follow-up. Histologically, the tumors showed clear boundaries and no obvious capsules. The tumor tissue mainly consisted of epithelioid tumor cells, thick-walled blood vessels, and a small amount of adipose tissue. Tumor cells with lipid vacuoles and acinar areas were large, round, polygonal, eosinophilic, or transparent in the cytoplasm. The enlarged and hyperchromatic nuclei were accompanied by distinct nucleoli and pathological mitosis. These histopathological findings resembled those of renal cell carcinoma, and immunohistochemical analysis was performed. The tumor cells were diffusely positive for HMB45, Melan-A, CK20, vimentin antibodies, and TFE3, suggesting that the tumor originated from perivascular epithelioid cells, excluding renal cell carcinoma. The Ki-67 index was 10%. These histopathological features were observed in liver mass puncture tissues. We also summarized 46 cases of EAML with distant metastasis and explored the clinicopathological features of EAML to improve the treatment of the disease. EAML is often ignored in the clinical setting, leading to metastasis and recurrence. Therefore, EAMLs require long-term follow-up, and timely detection of recurrent disease can improve the prognosis.

6.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 218-224, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37715441

RESUMEN

Non-small cell lung cancer (NSCLC), with its high mortality rate, lack of early diagnostic markers and prevention of distant metastases are the main challenges in treatment. To identify potential miRNAs and key genes in NSCLC to find new biomarkers and target gene therapies. The GSE102286, GSE56036, GSE25508, GSE53882, GSE29248 and GSE101929 datasets were obtained from the Gene Expression Omnibus (GEO) database and screened for differentially co-expressed miRNAs (DE-miRNAs) and lncRNAs (DElncRs) by GEO2R and R software package. Pathway enrichment analysis of DE-miRNAs-target genes was performed by String and Funrich database to construct protein-protein interaction (PPI) and competing endogenous RNA (ceRNA) network and visualized with Cytoscape software. Nineteen co-expressed DE-miRNAs were screened from five datasets. The 7683 predicted up- and down-regulated DE-miRNAs-target genes were significantly concentrated in cancer-related pathways. The top 10 hub nodes in the PPI were identified as hub genes, such as MYC, EGFR, HSP90AA1 and TP53, MYC, and ACTB. By constructing miRNA-hub gene networks, hsa-miR-21, hsa-miR-141, hsa-miR-200b and hsa-miR-30a, hsa-miR-30d, hsa-miR-145 may regulate most hub genes and hsa-miR-141, hsa-miR-200, hsa-miR-145 had higher levels in the miRNA and ceRNA regulatory networks, respectively. In conclusion, the identification of hsa-miR-21, hsa-miR-141, hsa-miR-200b hsa-miR-30a, hsa-miR-30d and hsa-miR-145 provides a new theoretical basis for understanding the development of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Biología Computacional , Bases de Datos Factuales , MicroARNs/genética
7.
Clin Lab ; 69(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37436378

RESUMEN

BACKGROUND: Prostate cancer (PCa) is challenging to treat. It is necessary to screen for related biological markers to accurately predict the prognosis and recurrence of prostate cancer. METHODS: Three data sets, GSE28204, GSE30521, and GSE69223, from the Gene Expression Omnibus (GEO) database were integrated into this study. After the identification of differentially expressed genes (DEGs) between PCa and normal prostate tissues, network analyses including protein-protein interaction (PPI) network, and weighted gene co-expression network analysis (WGCNA) were used to select hub genes. Gene Ontology (GO) term analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to annotate the functions of DEGs and hub modules of the networks. Survival analysis was performed to validate the correlation between the key genes and PCa relapse. RESULTS: In total, 867 DEGs were identified, including 201 upregulated and 666 downregulated genes. Three hub modules of the PPI network and one hub module of the weighted gene co-expression network were determined. Moreover, four key genes (CNN1, MYL9, TAGLN, and SORBS1) were significantly associated with PCa relapse (p < 0.05). CONCLUSIONS: CNN1, MYL9, TAGLN, and SORBS1 may be potential biomarkers for PCa development.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Próstata , Humanos , Masculino , Biomarcadores de Tumor/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Recurrencia Local de Neoplasia/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Mapas de Interacción de Proteínas/genética , Calponinas
8.
Cell Death Dis ; 14(6): 347, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37268653

RESUMEN

Studies have indicated dietary restriction of methionine/cystine provided a therapeutic benefit in diseases such as cancer. However, the molecular and cellular mechanisms that underlie the interaction between methionine/cystine restriction (MCR) and effects on esophageal squamous cell carcinoma (ESCC) have remained elusive. Here, we discovered the dietary restriction of methionine/cystine has a large effect on cellular methionine metabolism as assayed in a ECA109 derived xenograft model. RNA-seq and enrichment analysis suggested the blocked tumor progression was affected by ferroptosis, together with the NFκB signaling pathway activation in ESCC. Consistently, GSH content and GPX4 expression were downregulated by MCR both in vivo and in vitro. The contents of Fe2+ and MDA were negatively correlated with supplementary methionine in a dose-dependent way. Mechanistically, MCR and silent of SLC43A2, a methionine transporter, diminished phosphorylation of IKKα/ß and p65. Blocked NFκB signaling pathway further decreased the expression of SLC43A2 and GPX4 in both mRNA and protein level, which in turn downregulated the methionine intake and stimulated ferroptosis, respectively. ESCC progression was inhibited by enhanced ferroptosis and apoptosis and impaired cell proliferation. In this study, we proposed a novel feedback regulation mechanism underlie the correlation between dietary restriction of methionine/cystine and ESCC progression. MCR blocked cancer progression via stimulating ferroptosis through the positive feedback loop between SLC43A2 and NFκB signaling pathways. Our results provided the theoretical basis and new targets for ferroptosis-based clinical antitumor treatments for ESCC patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Cistina/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas/patología , Metionina/metabolismo , Retroalimentación , FN-kappa B/metabolismo , Transducción de Señal , Proliferación Celular , Racemetionina/metabolismo , Racemetionina/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
9.
Genet Res (Camb) ; 2023: 8194338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234568

RESUMEN

Background: Calcific aortic valve disease (CAVD) is the most common native valve disease. Valvular interstitial cell (VIC) osteogenic differentiation and valvular endothelial cell (VEC) dysfunction are key steps in CAVD progression. Circular RNA (circRNAs) is involved in regulating osteogenic differentiation with mesenchymal cells and is associated with multiple disease progression, but the function of circRNAs in CAVD remains unknown. Here, we aimed to investigate the effect and potential significance of circRNA-miRNA-mRNA networks in CAVD. Methods: Two mRNA datasets, one miRNA dataset, and one circRNA dataset of CAVD downloaded from GEO were used to identify DE-circRNAs, DE-miRNAs, and DE-mRNAs. Based on the online website prediction function, the common mRNAs (FmRNAs) for constructing circRNA-miRNA-mRNA networks were identified. GO and KEGG enrichment analyses were performed on FmRNAs. In addition, hub genes were identified by PPI networks. Based on the expression of each data set, the circRNA-miRNA-hub gene network was constructed by Cytoscape (version 3.6.1). Results: 32 DE-circRNAs, 206 DE-miRNAs, and 2170 DE-mRNAs were identified. Fifty-nine FmRNAs were obtained by intersection. The KEGG pathway analysis of FmRNAs was enriched in pathways in cancer, JAK-STAT signaling pathway, cell cycle, and MAPK signaling pathway. Meanwhile, transcription, nucleolus, and protein homodimerization activity were significantly enriched in GO analysis. Eight hub genes were identified based on the PPI network. Three possible regulatory networks in CAVD disease were obtained based on the biological functions of circRNAs including: hsa_circ_0026817-hsa-miR-211-5p-CACNA1C, hsa_circ_0007215-hsa-miR-1252-5p-MECP2, and hsa_circ_0007215-hsa-miR-1343-3p- RBL1. Conclusion: The present bionformatics analysis suggests the functional effect for the circRNA-miRNA-mRNA network in CAVD pathogenesis and provides new targets for therapeutics.


Asunto(s)
Enfermedad de la Válvula Aórtica , MicroARNs , Humanos , ARN Circular/genética , Osteogénesis , Biología Computacional , Redes Reguladoras de Genes/genética , MicroARNs/genética
10.
Chem Biol Drug Des ; 102(3): 580-586, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37186370

RESUMEN

IgA nephropathy (IgAN) is the most common glomerular autoimmune disease and has severe long-term consequences for patients, with 40% of the patients eventually progressing to end-stage renal disease. Despite the severity, no causal treatment is currently available. While the pathogenesis of IgAN is complex, disease severity is linked to autoantibodies against the gd-IgA1 epitope, a stretch in the hinge region of IgA1 that lacks O-glycans and is found in the characteristic immune complexes deposited in the kidneys of IgAN patients. One elegant, causal approach would be to remove the anti-gd-IgA1 autoantibodies and consequently reduce the immune complex burden on the kidneys. The administration of synthetic polymers that present autoantigens in a multivalent manner have been established as promising therapeutic strategies in other autoimmune diseases and may be applied to IgAN. We here present an improved protocol for the synthesis of the gd-IgA1 epitope, its successful coupling to a poly-L-lysine polymer and proof-of-concept experiments that the polymer-bound synthetic glycopeptide is able to capture the IgAN autoantibodies, making this approach a promising way forward for developing a targeted treatment option for IgAN patients.


Asunto(s)
Glomerulonefritis por IGA , Humanos , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/patología , Epítopos , Inmunoglobulina A , Autoanticuerpos , Complejo Antígeno-Anticuerpo , Galactosa
11.
Front Pharmacol ; 14: 1158254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007024

RESUMEN

Objective: In this study, alterations in oxidative stress-related indicators were evaluated in drug-naïve, first-episode schizophrenia (SCZ) patients, and the effectiveness of blood serum glucose, superoxide dismutase (SOD), bilirubin in the objective assistive diagnosis of schizophrenia was explored. Materials and methods: We recruited 148 drug-naïve, first-episode SCZ patients and 97 healthy controls (HCs). Blood biochemical indexes including blood glucose, SOD, bilirubin and homocysteine (HCY) in participants were measured, the indexes were compared between patients with SCZ and HCs. The assistive diagnostic model for SCZ was established on the basis of the differential indexes. Results: In SCZ patients, the blood serum levels of glucose, total (TBIL), indirect bilirubin (IBIL) and homocysteine (HCY) were significantly higher than those in HCs (p < 0.05), and the serum levels of SOD were significantly lower than those in HCs (p < 0.05). There was a negative correlation between SOD with the general symptom scores and total scores of PANSS. After risperidone treatment, the levels of uric acid (UA) and SOD tended to increase in patients with SCZ (p = 0.02, 0.19), and the serum levels of TBIL and HCY tended to decrease in patients with SCZ (p = 0.78, 0.16). The diagnostic model based on blood glucose, IBIL and SOD was internally cross-validated, and the accuracy was 77%, with an area under the curve (AUC) of 0.83. Conclusion: Our study demonstrated an oxidative state imbalance in drug-naïve, first-episode SCZ patients, which might be associated with the pathogenesis of the disease. Our study proved that glucose, IBIL and SOD may be potential biological markers of schizophrenia, and the model based on these markers can assist the early objective and accurate diagnosis of schizophrenia.

12.
Front Oncol ; 12: 917366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36457496

RESUMEN

Objective: The overexpression of polo-like kinase 1 (PLK-1) has been found in a broad spectrum of human tumors, making it an attractive prognostic tumor biomarker. Nowadays, PLK-1 is considered a cancer therapeutic target with clinical therapeutic value. The aim of the present study was to systematically review the prognostic and therapeutic value of PLK-1 in different malignant neoplasms. Methods: A systematic literature search of the Cochrane Library, PubMed, Web of Science, and China National Knowledge Internet (CNKI) databases was conducted between December 2018 and September 2022. In total, 41 published studies were screened, comprising 5,301 patients. We calculated the pooled odds ratios (ORs) and corresponding 95%CIs for the clinical parameters of patients included in these studies, as well as the pooled hazard ratios (HRs) and corresponding 95% CIs for 5-year overall survival (OS). Results: Our analysis included 41 eligible studies, representing a total of 5,301 patients. The results showed that overexpression of PLK-1 was significantly associated with poor OS (HR, 1.57; 95% CI, 1.18-2.08) and inferior 5-year disease-free survival/relapse-free survival ((HR, 1.89; 95% CI, 1.47-2.44). The pooled analysis showed that PLK-1 overexpression was significantly associated with lymph node metastasis, histological grade, clinical stages (p < 0.001 respectively), and tumor grade (p < 0.001). In digestive system neoplasms, PLK-1 overexpression was significantly associated with histopathological classification, primary tumor grade, histological grade, and clinical stages (p = 0.002, p = 0.001, p < 0.0001, respectively). In breast cancer, PLK-1 was significantly associated with 5-year overall survival, histological grade, and lymph node metastasis (p < 0.001, p = 0.003, p < 0.001, respectively). In the female reproductive system, PLK-1 was significantly associated with clinical stage (p = 0.011). In the respiratory system, PLK-1 was significantly associated with clinical stage (p = 0.021). Conclusion: Our analysis indicates that high PLK-1 expression is associated with aggressiveness and poor prognosis in malignant neoplasms. Therefore, PLK-1 may be a clinically valuable target for cancer treatment.

13.
Schizophr Res ; 250: 76-86, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36370535

RESUMEN

Bacterial dysbiosis has been demonstrated in patients with schizophrenia (SCH). The aim of the present study was to investigate alterations in mycobiota composition and fungi-bacteria correlation network in drug-naïve, first episode SCH. We recruited 205 SCH patients and 125 healthy controls (HCs), whose gut bacterial and fungal compositions were characterized by 16S and 18S ribosomal RNA gene amplicon sequencing, respectively. Fungal-bacterial relative correlation network analysis was performed using the Spearman's test and distance correlation. We also computed relative networks connectedness, which represents the ratio of significant interactions (edges) and taxa (nodes) in the network. SCH patients showed lower fungal α-diversity compared with that of HCs. Furthermore, we identified 29 differential fungal markers at multiple taxonomies between SCH patients and HCs. SCH patients also showed a significantly lower fungi-to-bacteria α-diversity ratio compared with that of HCs (p = 1.81 × 10-8). In risk prediction models, we observed that combining bacterial and fungal markers achieved higher accuracy than that of bacterial markers alone (AUC = 0.847 vs AUC = 0.739; p = 0.043). Fungal-bacterial correlation network was denser in HCs than in SCH patients and was characterized by a high number of neighbors (p < 0.05). In addition, an increased abundance of Purpureocillium was associated with more severe psychiatric symptoms and poorer cognitive function in SCH patients (p < 0.05). Our study demonstrated a disrupted and weakened fungi-bacteria network in SCH patients, which might be associated with their clinical manifestations. Future research on fungal-bacterial correlation network is warranted to advance our understanding about the role of mycobiota in the etiology of SCH and to explore novel intervention approaches.


Asunto(s)
Microbioma Gastrointestinal , Esquizofrenia , Humanos , Hongos/genética , Heces/microbiología , Disbiosis , Bacterias/genética
14.
Front Oncol ; 12: 1022705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439460

RESUMEN

Molecular targeting and immunotherapy provide durable responses for advanced lung cancer clinical therapy in many patients. However, the mechanisms of occurrence of progressive disease and resistance to targeted therapy and immunotherapy have not been elucidated. Herein, we report two cases of small cell transformation of non-small cell lung cancer (NSCLC) after targeted therapy or immunotherapy. The first case was a 63-year-old female patient presenting with cough and expectoration. Left lung invasive adenocarcinoma was diagnosed after left lung tumor biopsy. After epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeted therapy for almost 2 years, disease progression and symptom aggravation were observed. Pathological and immunohistochemical staining results after biopsy revealed small cell lung cancer (SCLC). The second case was a 75-year-old male patient diagnosed with stage IV squamous cell carcinoma of the lung, who received carboplatin/paclitaxel adjuvant chemotherapy and pembrolizumab treatment with partial response. Disease progression and metastasis occurred within 15 cycles of immunotherapy. Computed tomography revealed a lower left lung tumor. Cytological examination of lung lavage fluid and biopsy under thoracoscope revealed SCLC. In conclusion, histological transformation to SCLC is a potential mechanism of NSCLC resistance to targeted therapy or immunotherapy. During treatment, clinicians should monitor serum tumor markers or genome sequencing, particularly in patients with disease progression, as this may be beneficial for early detection of SCLC transformation. Repeated biopsy can be performed if necessary, and the therapeutic regimen can be adjusted in a timely manner according to the results of molecular pathological tests for personalization and whole-process management.

15.
Physiol Genomics ; 54(10): 371-379, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35968900

RESUMEN

As a major complication after percutaneous coronary intervention (PCI) in patients who suffer from coronary artery disease, in-stent restenosis (ISR) poses a significant challenge for clinical management. A miRNA-mRNA regulatory network of ISR can be constructed to better reveal the occurrence of ISR. The relevant data set from the Gene Expression Omnibus (GEO) database was downloaded, and 284 differentially expressed miRNAs (DE-miRNAs) and 849 differentially expressed mRNAs (DE-mRNAs) were identified. As predicted by online tools, 65 final functional genes (FmRNAs) were overlapping DE-mRNAs and DE-miRNAs target genes. In the biological process (BP) terms of gene ontology (GO) functional analysis, the FmRNAs were mainly enriched in the cellular response to peptide, epithelial cell proliferation, and response to peptide hormone. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the FmRNAs were mainly enriched in breast cancer, endocrine resistance, and Cushing syndrome. Jun proto-oncogene, activator protein-1 (AP-1) transcription factor subunit (JUN), insulin-like growth factor 1 receptor (IGF1R), member RAS oncogene family (RAB14), specificity protein 1 (SP1), protein tyrosine phosphatase nonreceptor type 1 (PTPN1), DDB1 and CUL4 associated factor 10 (DCAF10), retinoblastoma-binding protein 5 (RBBP5), and eukaryotic initiation factor 4A-I (EIF4A1) were hub genes in the protein-protein interaction network (PPI network). The miRNA-mRNA network containing DE-miRNAs and hub genes was built. Hsa-miR-139-5p-JUN, hsa-miR-324-5p-SP1 axis pairs were found in the miRNA-mRNA network, which could promote ISR development. The aforementioned results indicate that the miRNA-mRNA network constructed in ISR has a regulatory role in the development of ISR and may provide new approaches for clinical treatment and experimental development.


Asunto(s)
Reestenosis Coronaria , MicroARNs , Hormonas Peptídicas , Intervención Coronaria Percutánea , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor X/genética , Factor X/metabolismo , Redes Reguladoras de Genes , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , MicroARNs/genética , MicroARNs/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Proteínas de Unión al GTP rab/genética
16.
Psychiatry Res ; 313: 114582, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526421

RESUMEN

OBJECTIVE: Many studies have reported the important role of serum levels of short-chain fatty acids (SCFAs) in lipid metabolism and cognitive dysfunction. This study investigated the role of plasma lipids and SCFAs on cognitive functioning in drug- naïve first episode schizophrenia. METHODS: This study recruited 44 schizophrenia inpatients and 35 healthy controls. Plasma lipid metabolism was characterized using standard enzymatic methods and an automated analyzer. Serum levels of SCFAs were measured by Gas chromatography mass spectrometry (GC-MS). Cognitive performance was evaluated by the MATRICS Consensus Cognitive Battery (MCCB). RESULTS: The patient group showed significantly higher serum levels of total SCFAs, acetic acid, acetic acid/ propionic acid ratio, and poorer cognitive scores compared with the control group (p's < 0.05). Within the patient group, the lipid levels were positively associated with acetic acid/ propionic acid ratio (p's < 0.05). Furthermore, multiple regression analysis revealed that the interactions of LDL level × acetic acid/ propionic acid ratio was a significant predictor of the MCCB working memory, and processing speed subscale scores within the patient group. CONCLUSIONS: Cognitive dysfunction and abnormal serum levels of SCFAs occur in the early phase of schizophrenia. Lipid metabolism and serum levels of SCFAs might be, both independently or interactively, associated with cognitive dysfunction in schizophrenia.


Asunto(s)
Disfunción Cognitiva , Esquizofrenia , Cognición , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/etiología , Ácidos Grasos Volátiles/metabolismo , Humanos , Propionatos , Esquizofrenia/complicaciones
17.
Mol Psychiatry ; 27(10): 4123-4135, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35444255

RESUMEN

The intricate processes of microbiota-gut-brain communication in modulating human cognition and emotion, especially in the context of mood disorders, have remained elusive. Here we performed faecal metagenomic, serum metabolomics and neuroimaging studies on a cohort of 109 unmedicated patients with depressed bipolar disorder (BD) patients and 40 healthy controls (HCs) to characterise the microbial-gut-brain axis in BD. Across over 12,000 measured metabolic features, we observed a large discrepancy (73.54%) in the serum metabolome between BD patients and HCs, spotting differentially abundant microbial-derived neuroactive metabolites including multiple B-vitamins, kynurenic acid, gamma-aminobutyric acid and short-chain fatty acids. These metabolites could be linked to the abundance of gut microbiota presented with corresponding biosynthetic potentials, including Akkermansia muciniphila, Citrobacter spp. (Citrobacter freundii and Citrobacter werkmanii), Phascolarctobacterium spp., Yersinia spp. (Yersinia frederiksenii and Yersinia aleksiciae), Enterobacter spp. (Enterobacter cloacae and Enterobacter kobei) and Flavobacterium spp. Based on functional neuroimaging, BD-related neuroactive microbes and metabolites were discovered as potential markers associated with BD-typical features of functional connectivity of brain networks, hinting at aberrant cognitive function, emotion regulation, and interoception. Our study combines gut microbiota and neuroactive metabolites with brain functional connectivity, thereby revealing potential signalling pathways from the microbiota to the gut and the brain, which may have a role in the pathophysiology of BD.


Asunto(s)
Trastorno Bipolar , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Trastorno Bipolar/metabolismo , Eje Cerebro-Intestino , Metaboloma , Encéfalo/metabolismo
18.
Eur J Neurol ; 29(10): 2976-2986, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35357766

RESUMEN

BACKGROUND AND PURPOSE: To explore the relationship between baseline levels of matrix metalloproteinase 9 (MMP9) in peripheral blood and the outcomes in patients with acute minor stroke and transient ischemic attack (TIA). METHODS: We assessed data from patients with acute minor ischemic stroke or TIA who were included in the CHANCE (Clopidogrel in High-Risk Patients with Acute Nondisabling Cerebrovascular Events) trial. Baseline level of MMP9 in peripheral blood is classified into five quintiles. We assessed the relationship between the baseline MMP9 and outcomes of stroke recurrence, composite vascular events, and poor functional outcomes within 90 days after stroke onset. RESULTS: Of the 3014 patients included, 295 (9.79%) had recurrent stroke, 289 (9.59%) had recurrent ischemic stroke, 297 (9.85%) had combined vascular events, and 199 (6.64%) had poor functional outcomes within 90 days. We used MMP9 concentrations near hazard ratio (HR) = 1 (Q3) in restricted cubic splines as the reference. The result showed that, compared to patients in the Q3 group, patients in the highest quintile (Q5 group) had an increased risk of poor functional outcomes at 90 days after adjusting the risk factors and confounders (p = 0.030), which may be associated with an increased risk of combined vascular events (p = 0.052). Using Cox regression models or logistic regression models with restricted cubic spline, we also observed that higher MMP9 ratios were associated with an increased risk of stroke recurrence, combined events, and poor functional outcomes at a range of concentrations. CONCLUSIONS: For patients with acute minor stroke or TIA, higher baseline MMP9 level was associated with an increased risk of poor functional outcomes, which might be related to stroke recurrence and combined vascular events.


Asunto(s)
Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ataque Isquémico Transitorio/complicaciones , Metaloproteinasa 9 de la Matriz , Inhibidores de Agregación Plaquetaria/efectos adversos , Recurrencia , Factores de Riesgo , Accidente Cerebrovascular/complicaciones
19.
Int J Clin Exp Pathol ; 15(1): 1-10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145578

RESUMEN

BACKGROUND: Xinjiang, China shows the world's highest incidence and mortality rates of cervical cancer. Due to limited conditions available for medical examination, hybrid capture 2 (HC2) and other detection methods are used rarely, and early screening for human papillomavirus (HPV) cannot be carried out. Therefore, we established a double-antibody sandwich (DAS)-enzyme-linked immunosorbent assay (ELISA) based on a polymorphism of the Xinjiang HPV16 L1 strain (KU721788). METHODS: According to the conserved sequence and specific epitope of Xinjiang strain HPV16 L1, we prepared two anti-HPV16 L1 monoclonal antibodies and combined them to construct a DAS-ELISA. Detection conditions for the DAS-ELISA were optimized, and HC2 was used as the control to verify the specificity, repeatability and coincidence detection of the DAS-ELISA. RESULTS: The optimized conditions for the DAS-ELISA were: dilution of the capture antibody was 1:100; the enzyme-labelled antibody was 1:10; the sample reaction time was 45 min; the enzyme-labelled antibody was applied for 40 min, and the substrate color development time was 15 min. The quality of the DAS-ELISA for the detection of HPV 16 was very high, and there was no significant difference when compared with HC2. CONCLUSION: The DAS-ELISA developed on the basis of the Xinjiang strain (KU721788) polymorphism possesses the advantages of a detection rate similar to that for the HC2 assay currently used clinically, but it is more convenient operationally and at lower cost. DAS-ELISA is thus easier to implement for cervical cancer screening in economically depressed areas.

20.
BMC Cancer ; 22(1): 166, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151264

RESUMEN

BACKGROUND: Synovial sarcoma (SS) is a type of soft tissue sarcoma (STS) of undetermined tissue origin, which is characterized by the recurrent pathognomonic chromosomal translocation t (X;18)(p11.2; q11.2). Studies have shown that SS is a malignant tumor originating from cancer stem cells or pluripotent mesenchymal stem cells and may be related to fusion genes. In addition, some studies have indicated that the induction of epithelial-mesenchymal transition (EMT) via the TGF-ß1/Smad signaling pathway leads to SS metastasis. METHODS: We analyzed the effects of SYT-SSX1 on the stemness of SS cells via TGF-ß1/Smad signaling in vitro. The SYT-SSX1 fusion gene high expression cell was constructed by lentiviral stable transfer technology. SYT-SSX1 and SW982 cells were cultured and tested for sphere-forming ability. The transwell migration assay and flow cytometry were used to assess the migration ability of the sphere cells as well as the expression of CSC-related markers. We treated SYT-SSX1 cells with rhTGF-ß1 (a recombinant agent of the TGF-ß1 signaling pathway) and SB431542 and observed morphological changes. A CCK-8 experiment and a western blot (WB) experiment were conducted to detect the expression of TGF-ß1 signaling pathway- and EMT-related proteins after treatment. The SYT-SSX1 cells were then cultured and their ability to form spheres was tested. Flow cytometry, WB, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of CSC surface markers on SYT-SSX1 sphere cells. RESULTS: It was found that SYT-SSX1 has stronger sphere-forming ability, migration ability, and higher expression of CSC-related molecules than SW982 cells. Through treating SYT-SSX1 and SW982 cells with rhTGF-ß1 and SB431542, we found that TGF-ß1 enhanced the proliferation of cells, induced EMT, and that TGF-ß1 enhanced the characteristics of tumor stem cells. CONCLUSIONS: Our results suggest that SYT-SSX1 enhances invasiveness and maintains stemness in SS cells via TGF-ß1/Smad signaling. These findings reveal an effective way to potentially improve the prognosis of patients with SS by eliminating the characteristics of cancer stem cells (CSCs) during treatment.


Asunto(s)
Proteínas de Fusión Oncogénica/metabolismo , Sarcoma Sinovial/genética , Sarcoma/genética , Transducción de Señal/genética , Neoplasias de los Tejidos Blandos/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Humanos , Invasividad Neoplásica/genética , Pronóstico , Sarcoma/patología , Sarcoma Sinovial/patología , Proteínas Smad/metabolismo , Neoplasias de los Tejidos Blandos/patología , Factor de Crecimiento Transformador beta1/metabolismo , Translocación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...