Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38797757

RESUMEN

A simple, low-cost, and highly sensitive method using a modified QuECHERS procedure based on a liquid chromatography-tandem mass spectrometer (LC-MS/MS) was established to simultaneously quantify lufenuron and chlorfenapyr and the corresponding metabolite tralopyril in cabbage for the first time. On the basis of this method, terminal residue and dietary risk of lufenuron and chlorfenapyr in cabbage were investigated. The recoveries of lufenuron, chlorfenapyr, and tralopyril ranged from 88 to 110%, with relative standard deviation of less than 12.4%. The field trial results showed that at the pre-harvest interval (PHI) of 21 days, the terminal residues of lufenuron, chlorfenapyr, and tralopyril in the supervised trials were not higher than 0.02 mg/kg, and the highest detected residue levels of lufenuron, chlorfenapyr, and tralopyril were 0.047, 0.055, and <0.02 mg·kg-1 at 14-day pre-harvest respectively, which were lower than the maximum residue limits (MRLs) for cabbage established in China. For the dietary risk assessment, the national estimated daily intakes (NEDIs) as proportion of acceptable daily intakes (ADIs) were 80.4% and 29.9% for chlorfenapyr and lufenuron respectively indicating an acceptable dietary risk to Chinese population.

2.
Ecotoxicol Environ Saf ; 269: 115744, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086263

RESUMEN

A widely applied pesticide of azoxystrobin, is increasingly detected in the water environment. Concern has been raised against its potential detriment to aquatic ecosystems. It has been shown that exposure to azoxystrobin interfere with the locomotor behavior of zebrafish larvae. This study aims to investigate whether exposure to environmental levels of azoxystrobin (2 µg/L, 20 µg/L, and 200 µg/L) changes the behavior of male adult zebrafish. Herein, we evaluated behavioral response (locomotor, anxiety-like, and exploratory behaviors), histopathology, biochemical indicators, and gene expression in male adult zebrafish upon azoxystrobin exposure. The study showed that exposure to azoxystrobin for 42 days remarkably increased the locomotor ability of male zebrafish, resulted in anxiety-like behavior, and inhibited exploratory behavior. After treatment with 200 µg/L azoxystrobin, vasodilatation, and congestion were observed in male zebrafish brains. Exposure to 200 µg/L azoxystrobin notably elevated ROS level, MDA concentration, CAT activity, and AChE activity, while inhibiting SOD activity, GPx activity, ACh concentration, and DA concentration in male zebrafish brains. Moreover, the expression levels of genes related to the antioxidant, cholinergic, and dopaminergic systems were significantly changed. This suggests that azoxystrobin may interfere with the homeostasis of neurotransmitters by causing oxidative stress in male zebrafish brains, thus affecting the behavioral response of male zebrafish.


Asunto(s)
Pirimidinas , Estrobilurinas , Contaminantes Químicos del Agua , Pez Cebra , Animales , Masculino , Pez Cebra/metabolismo , Ecosistema , Estrés Oxidativo , Colinérgicos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
3.
Chemosphere ; 350: 140992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141676

RESUMEN

Carbofuran, a widely used carbamate insecticide, is frequently detected in water. In this study, a high-performance adsorbent (WAB4) for carbofuran was obtained from laboratory-synthesized biochars. The maximum adsorption of carbofuran by WAB4 reaches 113.7 mg/g approximately. The adsorption of carbofuran by biochar was a multi-molecular layer and the adsorption process conforms to the pseudo-second-order kinetic model (R2 = 0.9984) and Freundlich isotherm model (R2 = 0.99). Importantly, an in vivo rat model was used to assess the combined toxicological effects of biochar-carbofuran complexes. The toxicity of the complexes (LD50 > 12 mg/kg) is lower than that of carbofuran (LD50 = 7.9 mg/kg) alone. The damage of biochar-carbofuran complex on rat liver and lung is significantly less than that of carbofuran. The Cmax and bioavailability of carbofuran were found to be reduced by 64% and 68%, respectively, when biochar was present, by UPLC-MS/MS analysis of carbofuran in rat plasma. Furthermore, it was confirmed that the biochar-carbofuran complex is relatively stable in the gastrointestinal tract, by performing a carbofuran release assay in artificial gastrointestinal fluids in vitro. Collectively, biochar is a bio-friendly material for the removal of carbofuran from water.


Asunto(s)
Carbofurano , Contaminantes Químicos del Agua , Animales , Ratas , Carbofurano/toxicidad , Adsorción , Agua , Cromatografía Liquida , Espectrometría de Masas en Tándem , Carbón Orgánico , Cinética , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
4.
Pestic Biochem Physiol ; 197: 105682, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072539

RESUMEN

High-performance pesticide formulations are essential for sustainable agriculture. Among these, nano-pesticides exhibit great advantages in pest control because of their unique size effects. However, the direct effects of nano-formulation fungicides on fungal pathogens remain largely unexplored. In this study, three qualified formulations, suspension concentrate (SC), microcapsules (CS), and nanocapsules (NCS) of pyraclostrobin (PYR) were prepared and utilized to reveal their biocontrol activities against Rhizoctonia solani. Among these three formulations, NCS exhibited notable biocontrol efficacy against R. solani exemplified by an EC50 of 0.319 mg/L for mycelia, distortion of mycelia and abnormalities in cell ultrastructure. Moreover, NCS displayed excellent internalization within R. solani mycelia, contributing to severe damage to cell membrane permeability. Importantly, an equivalent quantity of NCS-PYR showed potent inhibitory effects on the target pathogen, as indicated by reduced adenosine triphosphate (ATP) content and mitochondrial Complex III activity. The NCS consistently exhibited superior in vivo protective and curative activities against R. solani compared to those of CS and SC in rice and faba bean. In summary, we uncovered the strength of rapid efficacy and biocontrol activity of NCS against R. solani and elucidated the advantages of NCS-PYR from the perspective of the target pathogen in agriculture.


Asunto(s)
Nanocápsulas , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Rhizoctonia
5.
Front Plant Sci ; 14: 1212818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767301

RESUMEN

Introduction: While the integrated rice-crayfish (Procambarus clarkii) farming system (IRCFS) is widely developing in China, the widespread use of Unmanned Aerial Spraying Systems (UASS) to protect rice from pests has led to potential pesticide risk for the crayfish in IRCFS. Therefore, it is crucial to examine UASS's spray deposition and drift in IRCFS. Method: In this study, we used the oligonucleotide sequence-tracking / dot-blotting (OSTDB) method to trace pesticide spraying. We collected detailed data not only on spray loss in the paddy fields, but also on spray drift in the breeding ditches caused by upwind and downwind spray areas. Additionally, pesticide residues in the breeding ditches were measured using LC-MS/MS by collecting water samples after pesticide application. Results: The data analysis indicated that the spray loss in the paddy field was significantly greater than that in the breeding ditches. The spray drift in the breeding ditches, caused by the upwind spray area, was seven times higher than that originating from the downwind spray area. Furthermore, the results also revealed that the bulk flow between the paddy fields and the breeding ditches contributed a substantial amount of pesticide residue to the water body in the breeding ditches. In addition, we investigated the acute toxicities of common insecticides using in paddy fields, including thiamethoxam (THI), chlorantraniliprole (CHI), THI·CHI-Mix and THI·CHI-WG. Discussion: The results demonstrated that the spray losses and spray drift from UASS spray applications of these pesticides in IRCFS would not cause acute toxicity or death in crayfish. These findings provide important materials for establishing pesticide application standards and guiding the field testing of droplet deposition and drift in IRCFS.

6.
Materials (Basel) ; 16(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37570063

RESUMEN

The strip filling method in underground reservoir needs high strength to achieve the requirements of water storage. In order to address the challenges associated with costly and weak filling materials, this study aimed to develop an economically efficient and high-strength gangue-based geopolymer backfill material (GBGBM). To achieve this, the Taguchi method was employed to design a series of 25 experiments, each consisting of four factors and five levels. This study focused on investigating the effects of different gangue gradation levels, sand ratios, water binder ratios (w/b), and aggregate binder ratios (a/b) on the working characteristics and unconfined compressive strength (UCS) of the GBGBM. The optimal combination of the GBGBM was determined by employing a signal-to-noise ratio (S/N)-based extreme difference and variance analysis. The results revealed that the w/b ratio exerted the most substantial influence on both the slump and UCS. Specifically, when employing a gradation of 50%, a sand ratio of 55%, an a/b ratio of 2.5, and a w/b ratio of 0.64, the slump measured 251.2 mm, the UCS at 3d reached 5.27 MPa, and the UCS at 28d amounted to 17.65 MPa. These findings indicated a remarkable improvement in early UCS by 131.14% and the late UCS by 49.45% compared to gangue-based cement backfill material (GBCBM). Additionally, this study examined the hydration products and microstructures of both GBGBM and GBCBM using X-ray diffraction (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) analyses. Significantly, the GBGBM exhibited notable advantages over the GBCBM, including a 78.16% reduction in CO2 emissions, a 73.45% decrease in energy consumption, and a 24.82% reduction in cost. These findings underscore the potential of GBGBM as a sustainable and cost-effective alternative to GBCBM.

7.
Environ Pollut ; 325: 121461, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934963

RESUMEN

Azoxystrobin, a strobilurin widely used to control rice diseases, has raised concerns about possible adverse effects on aquatic ecosystems. At present, very little is known about the effects of azoxystrobin on courtship and aggressive behavior and the potential underlying mechanisms. In the present study, after exposing adult male and female zebrafish to worst-case scenario concentrations of azoxystrobin (0, 2 µg/L, 20 µg/L, and 200 µg/L) for 42 d, we observed a decrease in courtship behavior and an increase in aggressive behavior in both male and female zebrafish. In addition, to elucidate the molecular mechanism of the behavioral effects of azoxystrobin, we quantified the changes in the concentrations of kisspeptin, 5-HT, GnIH, and their corresponding receptor mRNA expression in the brain. The results showed that 200 µg/L azoxystrobin decreased the concentrations of kisspeptin and increased the concentration of GnIH in both male and female zebrafish brain. In addition, azoxystrobin also significantly reduced 5-HT concentration in female zebrafish brain. Further investigation revealed that altered courtship and aggressive behavior were associated with the expression levels of genes (kiss1, kiss2, gnrh3, gnrhr3, 5ht1a, and 5ht2a) involved in kisspeptin-GnIH signaling pathway. In conclusion, our study suggested that azoxystrobin may impair courtship and aggressive behavior in zebrafish by interfering with the kisspeptin-GnIH signaling pathway, which may have more profound effects on natural zebrafish populations.


Asunto(s)
Kisspeptinas , Pez Cebra , Animales , Femenino , Masculino , Pez Cebra/metabolismo , Estrobilurinas/toxicidad , Estrobilurinas/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Cortejo , Ecosistema , Serotonina , Transducción de Señal
8.
RSC Adv ; 13(13): 8765-8778, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936844

RESUMEN

Tricyclazole, propiconazole, imidacloprid, and thiamethoxam are commonly used pesticides in paddy fields. It is necessary and practical to remove pesticides from the water environment because the low utilization rate of pesticides will produce residues in the water environment. It is known that there are few studies on the preparation of biochar adsorption pesticides by the walnut shell and few studies on the removal of tricyclazole and propiconazole. Based on this, this paper used the walnut shell as raw material and boric acid as an activator to prepare biochar by the one-step method. The boric acid modified walnut shell biochar (WAB4) with a specific surface area of 640.6 m2 g-1, exhibited the high adsorption capacity of all four pesticides (>70%) at pH 3-9. The adsorption capacities of tricyclazole, propiconazole, imidacloprid, and thiamethoxam were 171.67, 112.27, 156.40, and 137.46 mg g-1, respectively. The adsorption kinetics fitted the pseudo-second-order kinetic model and the adsorption isotherm curves conformed to the Freundlich isotherm model. The adsorption of pesticides by WAB4 was associated with hydrogen bonding, pore filling, hydrophobic effects, and π-π interactions. More significantly, WAB4 has excellent adsorption capacity compared to other adsorbents for real water samples. Finally, walnut shell biochar has no significant acute toxicity to Daphnia magna. This work shows that walnut shell-based biochar has a good effect on the removal of pesticides at a wide range of pH and is economical and safe, providing a new idea for the removal of pesticides in water.

9.
Int J Biol Macromol ; 237: 124186, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36990401

RESUMEN

Biochar materials have been widely employed for adsorption of pollutants, which necessitates further consideration of their efficiency and safety in environmental remediation. In this study, a porous biochar (AC) was prepared through the combination of hydrothermal carbonization and in situ boron doping activation to effectively adsorb neonicotinoids. The adsorption process was shown to be a spontaneous endothermic physical adsorption process, where the predominant interaction forces between the acetamiprid and AC were electrostatic and hydrophobic interactions. The maximum adsorption capacity was 227.8 mg g-1for acetamiprid and the safety of AC was verified by simulating the situation where the aquatic organism (D. magna) was exposed to the combined system (AC & neonicotinoids). Interestingly, AC was observed to reduce the acute toxicity of neonicotinoids owing to the reduced bioavailability of acetamiprid in D. magna and the newly generated expression of cytochrome p450. Thus, it enhanced the metabolism and detoxification response in D. magna, which reducing the biological toxicity of acetamiprid. This study not only demonstrates the potential application of AC from a safety perspective, but also provides insight into the combined toxicity caused by biochar after adsorption of pollutants at the genomic level, which fills the gap in related research.


Asunto(s)
Boro , Contaminantes Químicos del Agua , Adsorción , Celulosa , Carbón Orgánico/química , Neonicotinoides/química , Contaminantes Químicos del Agua/química , Cinética
10.
Artículo en Inglés | MEDLINE | ID: mdl-36914039

RESUMEN

Given the inevitable exposure of Eriocheir sinensis (E. sinensis) to fungicides in rice-crab co-culture systems, understanding the potential effect of fungisides is important for practical application. Molting is a crucial development process of E. sinensis, which is regulated by endocrine system and genetic factors, and is susceptible to exogenous chemicals. However, the impact of fungicides application on the molting of E. sinensis have been rarely reported. In the present study, propiconazole, a widely used fungicide for rice disease management, was found to exert potential effects on the molting of E. sinensis at residual-related level in the rice-crab co-culture fields. After 14 days of short-term exposure to propiconazole, female crabs exhibited remarkably higher levels of hemolymph ecdysone than males. When the exposure was extended to 28 days, propiconazole markedly accelerated molt-inhibiting hormone expression by 3.3-fold, ecdysone receptor expression by 7.8-fold, and crustacean retinoid X receptor expression by 9.6-fold in male crabs, while it showed the opposite effect in females with suppressed gene expression. Propiconazole also induced the activity of N-acetylglucosaminidase in male crabs rather than females during the experiments. Our study suggests that propiconazole exerts sex-specific effects on the molting of E. sinensis. The impact of propiconazole application in the rice-crab co-culture systems remains more assessment to avoid affecting the growth of cultured E. sinensis.


Asunto(s)
Braquiuros , Fungicidas Industriales , Animales , Masculino , Femenino , Muda/genética , Fungicidas Industriales/toxicidad , Triazoles/toxicidad
11.
J Cell Biochem ; 124(4): 557-572, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842167

RESUMEN

Gastric cancer (GC) with pulmonary metastasis is one of the deadliest diseases in the world; however, the underlying pathological mechanisms and potential therapeutic targets remain to be elucidated. As exosomes play indispensable roles in the formation of premetastatic niches (PMN) and cancer metastasis. Therefore, investigating the underlying mechanisms of exosome-mediated pulmonary metastasis of GC may shed new light on identifying novel therapeutic targets for GC treatment. GC-derived exosomes were isolated from the conditioned medium of mouse forestomach carcinoma (MFC) cell line. The effects of MFC-derived exosomes on pulmonary macrophage polarization were analyzed by reverse- transcription polymerase chain reaction and flow cytometry. Expression of PD-L1 and other proteins was evaluated by Western blot. Exosomal microRNAs (miRNAs) were analyzed by microarray. GC-derived exosomes (GC-exo) accumulated in high numbers in the lungs and were ingested by macrophages. The extracellular-signal-regulated kinase (ERK) signaling pathway was activated by GC-exo, inducing macrophage immunosuppressive-phenotype differentiation and increased PD-L1 expression. miRNA-sequencing identified 130 enriched miRNAs in GC-exo. Among the enriched miRNAs, miR-92a-3p plays a major role in activating ERK signaling via inhibition of PTEN expression. In addition, inhibiting ERK signaling with PD98059 significantly reduced the expression of PD-L1 in macrophages and, therefore, reversed the immunosuppressive PMN and inhibited the colonization of GC cells in the lungs. This study identified a novel mechanism of GC-exo mediated PD-L1 expression in lung macrophages that facilitates lung PMN formation and GC pulmonary metastasis, which also provided a potential therapeutic target for GC with pulmonary metastasis treatment.


Asunto(s)
Exosomas , Neoplasias Pulmonares , MicroARNs , Neoplasias Gástricas , Animales , Ratones , Neoplasias Gástricas/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Exosomas/metabolismo , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos/metabolismo , Neoplasias Pulmonares/metabolismo
12.
Nat Prod Res ; 37(4): 586-591, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35608160

RESUMEN

A new indole-diterpenoid, penijanthine E (1), and a known analogue (2), were obtained from the PDB culture of the marine-derived fungus Penicillium citrinum ZSS-9. The absolute configuration of 1 was elucidated by calculated TDDFT ECD and DP4plus calculations. The absolute configuration of 2 was confirmed by single-crystal X-ray diffraction analysis and TDDFT ECD calculations. Compounds 1 and 2 showed antiviral activity against influenza A virus (IAV) of A/WSN/33(H1N1) and A/PR/8/34(H1N1) strains with IC50 values ranging from 12.6 to 46.8 µM.


Asunto(s)
Diterpenos , Subtipo H1N1 del Virus de la Influenza A , Penicillium , Estructura Molecular , Penicillium/química , Diterpenos/química , Indoles/farmacología , Indoles/química , Hongos
13.
Environ Pollut ; 316(Pt 1): 120514, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309304

RESUMEN

Tricyclazole is used as a common fungicide to control rice blast. However, studies on the toxicity of tricyclazole to crabs in the rice-crab co-culture system are still extremely rare. Here, the environmental dissipation of tricyclazole was monitored in this model, and the potential toxicity of tricyclazole to E. sinensis at environmental concentrations as well as the dietary risk was evaluated. The results showed that tricyclazole had no significant acute toxicity to E. sinensis (LC50 > 100 mg/L), while it promoted body weight gain. Tricyclazole in the hepatopancreas had a higher persistent bioaccumulation risk than in the muscle. Tricyclazole suppressed the immune response of E. sinensis under prolonged exposure and there should be gender differences, with females being more sensitive. Lipid metabolism enzymes were also significantly inhibited. While tricyclazole stimulated males molting but prolonged molting duration, both molting and duration of females were also disturbed. The dietary risk assessment indicated that tricyclazole intake from current crab consumption was low risk. This evidence demonstrated that tricyclazole may have potential risks to individual development, nutritional quality, and economic value on E. sinensis and should be used with caution in rice-crab co-culture system whenever possible.


Asunto(s)
Braquiuros , Hepatopáncreas , Animales , Femenino , Masculino , Técnicas de Cocultivo , Hepatopáncreas/metabolismo , Alimentos Marinos , China
14.
Fish Shellfish Immunol ; 131: 646-653, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36330873

RESUMEN

Rice crab co-culture is a new integrated farming model in China. The application of triazole plant growth regulators (PRGs) is often used as an advantageous option to combat rice lodging. However, there is still a gap regarding the toxicity of these PRGs on the growth and development of the Chinese mitten crab (Eriocheir sinensis, E. sinensis). Here the effect of triazoles (paclobutrazol and uniconazole) on the molting mechanism of E. sinensis was investigated. Monitoring of regulatory genes associated with molting showed that the two PRGs were found to inhibit the expression of ecdysteroid hormone (EH), ecdysteroid receptors gene (EcR), and retinoid X receptors gene (RXR) and induce secretion of molt-inhibiting hormone (MIH) gene. In addition, the activities of chitinase (CHIA) and N-acetyl-ß-d-aminoglucosidase (ß-NAGase) were also inhibited by exposure to PRGs. Exposure to PRGs also elevated the mRNA expression of the growth-related myostatin gene (MSTN). These results revealed that there is a long-term risk of exposure to triazoles PRGs that may inhibit molting and affect normal development and immune system of E. sinensis.


Asunto(s)
Braquiuros , Muda , Animales , Braquiuros/genética , Braquiuros/metabolismo , Ecdisteroides/metabolismo , Ecdisteroides/farmacología , Muda/genética , Reguladores del Crecimiento de las Plantas/farmacología , Triazoles/toxicidad
15.
Environ Sci Pollut Res Int ; 29(58): 87402-87412, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35804233

RESUMEN

To comprehensively understand the toxic risks of phthalates to aquatic ecosystems, we examined the acute toxicity of di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) on multiple trophic models, including algae (Chlorella vulgaris), Daphnia magna and fish (Danio rerio, Pseudorasbora parva). Thus, a 15-day zebrafish exposure was conducted to trace the dynamic changes of phthalate-induced toxic effects. Among the four species, D. magna exhibited the strongest sensitivity to both DEHP and DBP, followed by D. rerio and P. parva. C. vulgaris exhibited the lowest sensitivity to phthalates. The sub-chronic zebrafish assay demonstrated that 1000 µg/L DBP induced significant mortality at 15 days post-exposure (dpe), and DEHP exhibited no lethality at the tested concentrations (10-5000 µg/L). Zebrafish hepatic SOD activity and sod transcription levels were inhibited by DBP from 3 dpe, which was accompanied by increased malondialdehyde level, while zebrafish exposed to DEHP exhibited less oxidative damage. Both DEHP and DBP induced time-dependent alterations on Ache activity in zebrafish brains, thus indicating the potential neurotoxicity toward aquatic organisms. Additionally, 1000 µg/L and higher concentration of DBP caused hepatic DNA damage in zebrafish from 7 dpe. These results provide a better understanding of the health risks of phthalate to water environment.


Asunto(s)
Chlorella vulgaris , Dietilhexil Ftalato , Ácidos Ftálicos , Animales , Dibutil Ftalato/toxicidad , Dietilhexil Ftalato/toxicidad , Pez Cebra , Ecosistema , Ácidos Ftálicos/toxicidad , Superóxido Dismutasa
16.
Food Chem ; 396: 133640, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839723

RESUMEN

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPDQ) can pose a threat to human health through the food chain because of their ubiquitous presence in the environment and the biotoxicity on organisms. In this work, we developed modified QuEChERS methods coupled with high performance liquid chromatography tandem mass spectrometry (HPLC/MS-MS) to explore whether 6PPD and 6PPDQ are present in fish and honey. The proposed methods showed acceptable limits of quantification (0.00043-0.001 mg/kg), linearity (R2 > 0.99), recovery (73.3%-108.3%), matrix effect (70.4%-95.6%) and repeatability (RSD < 8.4%). Accordingly, 6PPD and 6PPDQ have been discovered in snakehead, weever and Spanish mackerel fish, while none of which have been detected in the honey samples. The results of our work contributed to increasing public attention to 6PPD and 6PPDQ in agricultural products and provided important reference for the analysis of them.


Asunto(s)
Contaminantes Ambientales , Miel , Animales , Cromatografía Líquida de Alta Presión/métodos , Contaminantes Ambientales/análisis , Peces , Miel/análisis , Humanos , Espectrometría de Masas
17.
Sci Total Environ ; 838(Pt 2): 156013, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35588826

RESUMEN

The typical tire manufacturing additive 6PPD, its metabolites 6PPDQ and 4-Hydroxy should be monitored because of their ubiquitous presence in the environment and the high toxicity of 6PPDQ to coho salmon. The toxic effect of 6PPD and its metabolites have been revealed superficially, especially on behavioral characteristics. However, the behavioral indicators explored so far are relatively simple and the toxic causes are poorly understood. With this in mind, our work investigated the toxic effects of 6PPD, 6PPDQ and 4-Hydroxy on adult zebrafish penetratingly through machine vision, and the meandering, body angle, top time and 3D trajectory are used for the first time to show the abnormal behaviors induced by 6PPD and its metabolites. Moreover, neurotransmitter changes in the zebrafish brain were measured to explore the causes of abnormal behavior. The results showed that high-dose treatment of 6PPD reduced the velocity by 42.4% and decreased the time at the top of the tank by 91.0%, suggesting significant activity inhibition and anxiety. In addition, γ-aminobutyric acid and acetylcholine were significantly impacted by 6PPD, while dopamine exhibited a slight variation, which can explain the bradykinesia, unbalance and anxiety of zebrafish and presented similar symptoms as Huntingdon's disease. Our study explored new abnormal behaviors of zebrafish induced by 6PPD and its metabolites in detail, and the toxic causes were revealed for the first time by studying the changes of neurotransmitters, thus providing an important reference for further studies of the biological toxicity of 6PPD and its metabolites.


Asunto(s)
Discinesias , Pez Cebra , Animales , Ansiedad/inducido químicamente , Conducta Animal , Neurotransmisores/metabolismo , Pez Cebra/fisiología
18.
Chem Asian J ; 17(9): e202200083, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35277925

RESUMEN

We developed a facile, efficient method for synthesizing highly substituted 2-aminopyridines from unstable vinyl carbodiimides generated in situ in a one-pot transformation. A series of novel highly substituted 3-functionalized 2-aminopyridines were produced in good yields. Reaction mechanism studies, which included control experiments and density-functional theory (DFT) calculations, demonstrated that Rh and potassium carbonate played key roles in the cyclization step.


Asunto(s)
Azidas , Cetonas , Aminopiridinas , Ciclización
19.
Molecules ; 27(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268697

RESUMEN

Unsubstituted pyridin-2-amine has a high quantum yield and is a potential scaffold for a fluorescent probe. However, the facile access to conjugated highly substituted aminopyridines and the study of their fluorescent properties is scarce. In this paper, synthesis and fluorescent properties of multisubstituted aminopyridines were studied based on a recently developed Rh-catalyzed coupling of vinyl azide with isonitrile to form a vinyl carbodiimide intermediate, following tandem cyclization with an alkyne. An aminopyridine substituted with an azide group as a potential probe was further designed, synthesized, and evaluated. The "clicking-and-probing" experiment of it on BSA protein showed the potential of aminopyridine as a scaffold of a biological probe.

20.
BMC Plant Biol ; 22(1): 37, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039017

RESUMEN

BACKGROUND: Nicotianamine (NA), 2'-deoxymugineic acid (DMA), and mugineic acid (MA) are chelators required for iron uptake and transport in plants. Nicotianamine aminotransferase (NAAT), 2'-deoxymugineic acid synthase (DMAS), transporter of MAs (TOM), and efflux transporter of NA (ENA) are involved in iron uptake and transport in rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare); however, these families have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: Here, we identified 5 ZmNAAT, 9 ZmDMAS, 11 ZmTOM, and 2 ZmENA genes by genome mining. RNA-sequencing and quantitative real-time PCR analysis revealed that these genes are expressed in various tissues and respond differently to high and low iron conditions. In particular, iron deficiency stimulated the expression of ZmDMAS1, ZmTOM1, ZmTOM3, and ZmENA1. Furthermore, we determined protein subcellular localization by transient expression of green fluorescent protein fusions in maize mesophyll protoplasts. ZmNAAT1, ZmNAAT-L4, ZmDMAS1, and ZmDMAS-L1 localized in the cytoplasm, whereas ZmTOMs and ZmENAs targeted to plasma and tonoplast membranes, endomembranes, and vesicles. CONCLUSIONS: Our results suggest that the different gene expression profiles and subcellular localizations of ZmNAAT, ZmDMAS, ZmTOM, and ZmENA family members may enable specific regulation of phytosiderophore metabolism in different tissues and under different external conditions, shedding light on iron homeostasis in maize and providing candidate genes for breeding iron-rich maize varieties.


Asunto(s)
Genoma de Planta/genética , Hierro/metabolismo , Familia de Multigenes/genética , Proteínas de Plantas/genética , Zea mays/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Homeostasis , Deficiencias de Hierro , Filogenia , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión , Sideróforos/metabolismo , Transaminasas/genética , Transaminasas/metabolismo , Zea mays/enzimología , Zea mays/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA