Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 174: 116558, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603887

RESUMEN

Human adenovirus (HAdV) infection is a major cause of respiratory disease, yet no antiviral drugs have been approved for its treatment. Herein, we evaluated the antiviral and anti-inflammatory effects of cyclin-dependent protein kinase (CDK) inhibitor indirubin-3'-monoxime (IM) against HAdV infection in cells and a transgenic mouse model. After evaluating its cytotoxicity, cytopathic effect reduction, antiviral replication kinetics, and viral yield reduction assays were performed to assess the anti-HAdV activity of IM. Quantitative real-time polymerase chain reaction (qPCR), quantitative reverse transcription PCR (qRT-PCR), and western blotting were used to assess the effects of IM on HAdV DNA replication, transcription, and protein expression, respectively. IM significantly inhibited HAdV DNA replication as well as E1A and Hexon transcription, in addition to significantly suppressing the phosphorylation of the RNA polymerase II C-terminal domain (CTD). IM mitigated body weight loss, reduced viral burden, and lung injury, decreasing cytokine and chemokine secretion to a greater extent than cidofovir. Altogether, IM inhibits HAdV replication by downregulating CTD phosphorylation to suppress viral infection and corresponding innate immune reactions as a promising therapeutic agent.


Asunto(s)
Adenovirus Humanos , Antiinflamatorios , Antivirales , Indoles , Oximas , Replicación Viral , Indoles/farmacología , Animales , Oximas/farmacología , Humanos , Antivirales/farmacología , Adenovirus Humanos/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antiinflamatorios/farmacología , Ratones , Ratones Transgénicos , Infecciones por Adenovirus Humanos/tratamiento farmacológico , Infecciones por Adenovirus Humanos/virología , Células A549 , Citocinas/metabolismo , Fosforilación/efectos de los fármacos
2.
Clin Transl Sci ; 16(12): 2519-2529, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38013655

RESUMEN

The relationship between single nucleotide polymorphisms (SNPs) at various loci and adverse drug reactions (ADRs) in patients with gynecologic cancer receiving platinum-based chemotherapy (PPCT) remains unexplored. This research aimed to investigate the correlation between SNPs at several loci (e.g., GSTP1 rs1695, MTHFR rs1801133, XPC rs2228001, TP53 rs1042522, and ERCC1 rs3212986) and ADRs in patients with gynecologic cancer receiving PPCT. A total of 244 patients with gynecologic cancer who received first-line PPCT were included in this retrospective study. Blood fluorescence quantitative polymerase chain reaction was used to detect genotypes. Logistic regression, Pearson's Chi-square test, and Fisher's exact test were used to explore the correlations between these SNPs and the occurrence of ADRs. The logistic regression results showed that different genotypes of the five genes had no statistical significance in the overall grade greater than or equal to 3 ADRs. The results of Pearson's Chi-square test showed the same results. On specific adverse reactions, we found that the rs1042522 GG genotype significantly increased the risk of grade greater than or equal to 3 leucopenia compared with the CG and the CC genotypes (p = 0.002). The rs1695 AG genotype showed higher correlation for grade greater than or equal to 3 neutropenia (p = 0.020). The rs2228001 CC genotype also had a higher risk for grade greater than or equal to 3 neutropenia (p = 0.003). This study found that whereas the overall grade greater than or equal to 3 adverse reactions in patients with gynecologic cancer receiving PPCT were not associated with SNPs, specific SNPs (rs1042522 GG, rs1695 AG, and rs2228001 CC) were linked to higher risks of leucopenia and neutropenia, indicating their potential as predictors of hematotoxicity in PPCT-treated patients with gynecologic cancer.


Asunto(s)
Neoplasias , Neutropenia , Humanos , Femenino , Platino (Metal)/efectos adversos , Estudios Retrospectivos , Genotipo , Polimorfismo de Nucleótido Simple/genética
3.
Drug Deliv Transl Res ; 13(11): 2869-2884, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37204680

RESUMEN

Metastatic non-small cell lung cancer (NSCLC) is refractory with a very poor prognosis. Docetaxel (DTX) injection (Taxotere®) has been approved for the treatment of locally advanced or metastatic NSCLC. However, its clinical application is restricted by severe adverse effects and non-selective tissue distribution. In this study, we successfully developed DTX-loaded human serum albumin (HSA) nanoparticles (DNPs) with modified Nab technology, by introducing medium-chain triglyceride (MCT) as a stabilizer. The optimized formulation had a particle size of approximately 130 nm and a favorable stabilization time of more than 24 h. DNPs dissociated in circulation in a concentration-dependent manner and slowly released DTX. Compared with DTX injection, DNPs were more effectively taken up by NSCLC cells, thus exerting stronger inhibitory effects on their proliferation, adhesion, migration, and invasion. In addition, DNPs showed prolonged blood retention and increased tumor accumulation relative to DTX injection. Ultimately, DNPs produced more potent inhibitory effects on primary or metastatic tumor foci than DTX injections but caused markedly lower organ toxicity and hematotoxicity. Overall, these results support that DNPs hold great potential for the treatment of metastatic NSCLC in clinical.

4.
Molecules ; 25(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106608

RESUMEN

Because of the appealing properties, ionic liquids (ILs) are believed to be promising alternatives for the CO2 absorption in the flue gas. Several ILs, such as [NH2emim][BF4], [C4mim][OAc], and [NH2emim[OAc], have been used to capture CO2 of the simulated flue gas in this work. The structural changes of the ILs before and after absorption were also investigated by quantum chemical methods, FTIR, and NMR technologies. However, the experimental results and theoretical calculation showed that the flue gas component SO2 would significantly weaken the CO2 absorption performance of the ILs. SO2 was more likely to react with the active sites of the ILs than CO2. To improve the absorption capacity, the ionic liquid (IL) mixture [C4mim][OAc]/ [NH2emim][BF4] were employed for the CO2 absorption of the flue gas. It is found that the CO2 absorption capacity would be increased by about 25%, even in the presence of SO2. The calculation results suggested that CO2 could not compete with SO2 for reacting with the IL during the absorption process. Nevertheless, SO2 might be first captured by the [NH2emim][BF4] of the IL mixture, and then the [C4mim][OAc] ionic liquid could absorb more CO2 without the interference of SO2.


Asunto(s)
Dióxido de Carbono/aislamiento & purificación , Líquidos Iónicos/química , Dióxido de Azufre/química , Adsorción , Dióxido de Carbono/química , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
5.
Acta Pharm Sin B ; 9(3): 590-603, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31193846

RESUMEN

Gene therapy represents a promising treatment for the Alzheimer׳s disease (AD). However, gene delivery specific to brain lesions through systemic administration remains big challenge. In our previous work, we have developed an siRNA nanocomplex able to be specifically delivered to the amyloid plaques through surface modification with both CGN peptide for the blood-brain barrier (BBB) penetration and QSH peptide for ß-amyloid binding. But, whether the as-designed nanocomplex could indeed improve the gene accumulation in the impaired neuron cells and ameliorate AD-associated symptoms remains further study. Herein, we prepared the nanocomplexes with an siRNA against ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1), the rate-limiting enzyme of Aß production, as the therapeutic siRNA of AD. The nanocomplexes exhibited high distribution in the Aß deposits-enriched hippocampus, especially in the neurons near the amyloid plaques after intravenous administration. In APP/PS1 transgenic mice, the nanocomplexes down-regulated BACE1 in both mRNA and protein levels, as well as Aß and amyloid plaques to the level of wild-type mice. Moreover, the nanocomplexes significantly increased the level of synaptophysin and rescued memory loss of the AD transgenic mice without hematological or histological toxicity. Taken together, this work presented direct evidences that the design of precise gene delivery to the AD lesions markedly improves the therapeutic outcome.

6.
J Control Release ; 279: 220-233, 2018 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-29679667

RESUMEN

ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a key enzyme to cleave the amyloid precursor protein to develop Alzheimer's disease (AD). Reducing BACE1 expression in central neuron through RNA interference technology shows great promise to overcome AD. However, to obtain an efficient and neurons-specific delivery of siRNA against BACE1 through systemic administration remains challenging. Here, we design and prepare siRNA nano-carriers based on PEGylated poly(2-(N,N-dimethylamino) ethyl methacrylate) (PEG-PDMAEMA) modified with both the CGN peptide for blood-brain barrier (BBB) penetration and the Tet1 peptide for neuron-specific binding. The nanocomplexes CT/siRNA, composed of CGN-PEG-PDMAEMA and Tet1-PEG-PDMAEMA at a weight ratio of 1:1, display a good stability in the blood and do not lead to hemolysis at N/P = 10. The internalization of nanocomplexes in neuron cells relies on clathrin-mediated endocytosis and micropinocytosis, while caveolae-mediated endocytosis plays a major role in entrance of CT/siRNA into cerebral capillary endothelial cell bEnd.3. The nanocomplexes successfully escape from lysosomes and enter in the cytoplasm of the neuron cells, inducing effective gene silence (about 50% decrease in BACE1 mRNA levels) and reversing Aß25-35 oligomer-induced synaptic injury. After caudal vein injection in mice, CT/siRNA display higher brain accumulation than unmodified nanocomplexes (brain drug targeting index = 2.62), and colocalize with neurons or locate nearby. In APP/PS1 transgenic mice, the nanocomplexes significantly decrease BACE1 mRNA and the amyloid plaques, suppress phosphorylated tau protein levels, as well as promote hippocampal neurogenesis. Noticeably, administration of the nanocomplexes restores the cognitive performance of the AD transgenic mice to the level of wild-type control without significant adverse effects on myelination. Our results demonstrate the CT/siRNA nanocomplexes capable of specifically directing BACE1 siRNA to brain neurons with great potential for AD therapy.


Asunto(s)
Enfermedad de Alzheimer/terapia , Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Encéfalo/metabolismo , Nanopartículas , ARN Interferente Pequeño/administración & dosificación , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/terapia , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Endocitosis/fisiología , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Neuronas/metabolismo , Placa Amiloide/metabolismo , Polímeros/química , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/toxicidad
7.
Acta Biomater ; 49: 388-401, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27845275

RESUMEN

To realize the therapeutic potential of gene drugs for Alzheimer's disease (AD), non-invasive, tissue-specific and efficient delivery technologies must be developed. Here, a hybrid system for amyloid plaques targeted siRNA delivery was formed by PEGylated Poly(2-(N,N-dimethylamino) ethyl methacrylate) (PEG-PDMAEMA) conjugated with two d-peptides, a CGN for brain penetration and a QSH for ß-amyloid binding. The hybrid complex CQ/siRNA, composed of 25% MPEG-PDMAEMA, 50% CGN-PEG-PDMAEMA and 25% QSH-PEG-PDMAEMA, showed negligible cytotoxicity and could protect siRNA from enzyme degradation. Being taken up by neuron cells, the complexes could escape from lysosomes, release siRNA in the cytoplasm and thus producing effective gene silence (down-regulated protein level to 18.5%). After intravenous injection, CQ/siRNA penetrated into the brain in an intact form and located around the plaques in transgenic AD mice. The precisely amyloid plaques delivery resulted in increased therapeutic activities, which was demonstrated by the strong mRNA (36.4%) knockdown of BACE1 (a therapeutic target of AD), the less yield of enzyme-digested products sAPPß (-42.6%), as well as the better neurons protection than the single component complexes. In conclusion, the hybrid complex could efficiently and precisely deliver an siRNA to the AD lesion and might be a potential candidate for gene therapy for AD. STATEMENT OF SIGNIFICANCE: The gene delivery system achieving high brain penetration and lesion region accumulation was first applied to treat AD, and the preparation exhibited a significantly better neuroprotective effect than that modified with a single ligand. The intracellular process of which the complexes escape from lysosomes and release the siRNA in cytoplasm was revealed. The brain targeting and amyloid plaque binding ability of the complex were systemic evaluated, and the in vivo co-location experiments provided a direct evidence of the precise delivery of the siRNA to the amyloid plaques. One of the targeting ligands, CGN, which was a retro-inverso modified peptide to achieve better affinity to the BBB, was first applied to the brain targeting system.


Asunto(s)
Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , Placa Amiloide/terapia , ARN Interferente Pequeño/administración & dosificación , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Muerte Celular , Liberación de Fármacos , Endocitosis , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Silenciamiento del Gen , Lisosomas/metabolismo , Ratones Endogámicos ICR , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Células PC12 , Permeabilidad , Placa Amiloide/patología , Polímeros/química , Ratas , Ribonucleasa Pancreática/metabolismo , Fracciones Subcelulares/metabolismo
8.
Colloids Surf B Biointerfaces ; 136: 817-27, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26539808

RESUMEN

Lapatinib, a selective small-molecule dual-tyrosine kinase inhibitor of HER2 and EGFR, is effective in HER2-positive patients with advanced metastatic breast cancer. However, its low and variable oral absorption, large required daily dose and serious gastrointestinal side effects all limit its clinical use. Intravenous administration offers a good option to overcome these disadvantages. However, the poor solubility of lapatinib in water and organic solvents causes lapatinib to fail in a common injectable preparation. Considering lapatinib's high albumin binding ability (>99%), in this study, we developed human serum albumin nanoparticles loaded with lapatinib (LHNPs) by Nab technology for intravenous administration and investigated its efficacy against HER2-positive breast cancer. Raman shift, X-ray diffraction and X-ray photoelectron spectroscopy studies demonstrated that lapatinib was successfully incorporated into nanoparticles, and LHNPs exhibited good stability and sustained-release effect in vitro. LHNPs could be effectively taken up by SKBr3 cells in a concentration- and time-dependent manner, and the uptake was mediated by energy-dependent endocytosis, which involved clathrin-dependent pinocytosis. Furthermore, in vitro and in vivo data indicated that LHNPs presented the strong ability to induce apoptosis and superior anti-tumor efficacy in tumor-bearing mice to the commercial tablet Tykerb through the inhibition of HER2 phosphorylation. Subchronic toxicity assays indicated that LHNPs had no hepatic or kidney toxicity. With mature technology for industrial production and enhanced therapeutic effects, LHNPs are likely to have great potential as a safe therapeutic candidate against HER2-positive breast cancer in the clinic.


Asunto(s)
Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas , Quinazolinas/química , Receptor ErbB-2/metabolismo , Albúmina Sérica/química , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Lapatinib , Difracción de Polvo , Quinazolinas/uso terapéutico , Espectrometría Raman
9.
Phys Rev Lett ; 115(1): 017401, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26182119

RESUMEN

Pump-dependent photoluminescence imaging and second-order photon correlation studies have been performed on individual single-walled carbon nanotubes (SWCNTs) at room temperature. These studies enable the extraction of both the exciton diffusion constant and the Auger recombination coefficient. A linear correlation between these parameters is attributed to the effect of environmental disorder in setting the exciton mean free path and capture-limited Auger recombination at this length scale. A suppression of photon antibunching is attributed to the creation of multiple spatially nonoverlapping excitons in SWCNTs, whose diffusion length is shorter than the laser spot size. We conclude that complete antibunching at room temperature requires an enhancement of the exciton-exciton annihilation rate that may become realizable in SWCNTs allowing for strong exciton localization.

10.
PLoS One ; 10(4): e0120129, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831130

RESUMEN

Genexol-PM, produced by Samyang Company (Korea) is an excellent preparation of paclitaxel (PTX) for clinical cancer treatment. However, it cannot resolve the issue of multidrug resistance (MDR)-a significant problem in the administration of PTX to cancer patients. To increase the efficacy of Genexol-PM against MDR tumors, a mixed micelle capable of serving as a vehicle for PTX was developed, and two substances were chosen as carrier materials: 1) Polyethylene glycol-polylactic acid (PEG-PLA), the original vehicle of Genexol-PM. 2) Vitamin E-TPGS, an inhibitor of P-glycoprotein (P-gp). P-gp has been proven to be the main cause of MDR. In vitro evaluation indicated that the mixed micelle was an ideal PTX delivery system for the treatment of MDR tumors; the mixed micelle also showed a significantly better drug-loading coefficient than Genexol-PM.


Asunto(s)
Química Farmacéutica/métodos , Portadores de Fármacos/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ácido Láctico/química , Micelas , Polietilenglicoles/química , Polímeros/química , Vitamina E/química , Antineoplásicos/química , Antineoplásicos/farmacología , Transporte Biológico , Línea Celular Tumoral , Cumarinas/química , Portadores de Fármacos/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espacio Intracelular/metabolismo , Paclitaxel/química , Paclitaxel/farmacología , Tamaño de la Partícula , Poliésteres , Esferoides Celulares/efectos de los fármacos , Tiazoles/química
11.
Int J Pharm ; 484(1-2): 16-28, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25700543

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive cancer with limited treatment options. However, the shared feature of epidermal growth factor receptor (EGFR) expression in TNBC offers the opportunity for targeted molecular therapy for this breast cancer subtype. Previous studies have indicated that lapatinib, a selective small-molecular dual-tyrosine kinase inhibitor of HER2 and EGFR, is effective in reducing cancer progression and metastasis, indicating that it might be a candidate for TNBC treatment. However, its poor water solubility, low and variable oral absorption, and large daily dose all limit the clinical use of lapatinib. In this study, we developed human serum albumin (HSA) nanoparticles loaded with lapatinib for intravenous administration to overcome these disadvantages and enhance its efficacy against TNBC. 4T1 cells (a murine TNBC cells) were selected as the cell model because their growth and metastatic spread are very close to those of human breast cancer cells. Lapatinib-loaded HSA nanoparticles (LHNPs) were prepared by Nab technology. LHNPs displayed cytotoxicity similar to the free drug but exhibited superior capacity to induce early apoptosis in 4T1 monolayer cells. Importantly, LHNPs showed improved penetration and inhibition effects in tumor spheroids compared to lapatinib solution (LS). Pharmacokinetic investigations revealed that HSA nanoparticles (i.v.) effectively increased the accumulation of lapatinib in tumor tissue at 2.38 and 16.6 times the level of LS (i.v.) and Tykerb (p.o.), respectively. Consequently, it had markedly better suppression effects both on primary breast cancer and lung metastasis in tumor-bearing mice compared to the commercial drug Tykerb. The improved anti-tumor efficacy of LHNPs may be partly attributed to its close binding to SPARC, which is widely present in the extracellular matrix of tumor tissue. These results demonstrated that LHNPs might be a promising anti-tumor agent for TNBC.


Asunto(s)
Antineoplásicos/administración & dosificación , Nanopartículas/administración & dosificación , Quinazolinas/administración & dosificación , Albúmina Sérica/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Femenino , Humanos , Lapatinib , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/metabolismo , Quinazolinas/farmacocinética , Albúmina Sérica/metabolismo , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA