RESUMEN
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Asunto(s)
Cycadopsida , Sequías , Hojas de la Planta , Agua , Xilema , Xilema/fisiología , Xilema/anatomía & histología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Cycadopsida/fisiología , Cycadopsida/anatomía & histología , Especificidad de la EspecieRESUMEN
Interconduit pit membranes, which are permeable regions in the primary cell wall that connect to adjacent conduits, play a crucial role in water relations and the movement of nutrients between xylem conduits. However, how pit membrane characteristics might influence water-carbon coupling remains poorly investigated in cycads. We examined pit characteristics, the anatomical and photosynthetic traits of 13 cycads from a common garden, to determine if pit traits and their coordination are related to water relations and carbon economy. We found that the pit traits of cycads were highly variable and that cycads exhibited a similar tradeoff between pit density and pit area as other plant lineages. Unlike other plant lineages (1) pit membranes, pit apertures, and pit shapes of cycads were not coordinated as in angiosperms; (2) cycads exhibited larger pit membrane areas but lower pit densities relative to ferns and angiosperms, but smaller and similar pit membrane densities to non-cycad gymnosperms; (3) cycad pit membrane areas and densities were partially coordinated with anatomical traits, with hydraulic supply of the rachis positively coordinated with photosynthesis, whereas pit aperture areas and fractions were negatively coordinated with photosynthetic traits; (4) cycad pit traits reflected adaptation to wetter habitats for Cycadaceae and drier habitats for Zamiaceae. The large variation in pit traits, the unique pit membrane size and density, and the partial coordination of pit traits with anatomical and physiological traits of the rachis and pinna among cycads may have facilitated their dominance in a variety of ecosystems from the Mesozoic to modern times.
Asunto(s)
Cycadopsida , Ecosistema , Cycadopsida/metabolismo , Fotosíntesis , Plantas/metabolismo , Agua/metabolismo , CarbonoRESUMEN
The chloroplast (cp) genome sequence of Rhizophora apiculata was characterized. The cp genome length was 164,343 bp in length, containing a typical structure of a large single copy (LSC) of 93,155 bp, a small single copy (SSC) of 19,376 bp, and two inverted repeats (IRs) of 25,906 bp, with a GC content of 34.9%. There were 131 genes were annotated in the cp genome, including 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. A phylogenetic analysis using cp genomes of mangroves and ecologically associated species resolved R. apiculata in Rhizophora with R. stylosa and R. x lamarckii. This complete chloroplast sequence offers a promising tool for further species identification and evolutionary studies of Rhizophora, as well as for mangroves.
RESUMEN
The chloroplast (cp) genome sequence of Bruguiera gymnorrhiza was characterized. The cp genome length was 163,795 bp in length, with a GC content of 35.3%, containing a large single copy (LSC) of 90,830 bp, a small single copy (SSC) of 20,207 bp, and a pair of inverted repeats (IRs) of 26,379 bp. The genome contained 121 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. A phylogenetic analysis using cp genomes of mangroves and ecologically associated species resolved B. gymnorrhiza in Bruguiera with B. sexangula var. rhynchopetala. This complete chloroplast sequence offers a promising tool for further species identification and evolutionary studies of Bruguiera, as well as for mangroves.