Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Control Release ; 368: 548-565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462044

RESUMEN

Cancer treatment is challenged due to immunosuppressive inflammatory tumour microenvironment (TME) caused by infiltration of tumour-promoting and inhibition of tumour-inhibiting immune cells. Here, we report the engineering of chimeric nanomicelles (NMs) targeting the cell proliferation using docetaxel (DTX) and inflammation using dexamethasone (DEX) that alters the immunosuppressive TME. We show that a combination of phospholipid-DTX conjugate and PEGylated-lipid-DEX conjugate can self-assemble to form sub-100 nm chimeric NMs (DTX-DEX NMs). Anti-cancer activities against syngeneic and xenograft mouse models showed that the DTX-DEX NMs are more effective in tumour regression, enhance the survival of mice over other treatment modes, and alter the tumour stroma. DTX-DEX NMs cause a significant reduction in myeloid-derived suppressor cells, alter the polarization of macrophages, and enhance the accumulation of cytotoxic CD4+ and CD8+ T cells in tumour tissues, along with alterations in cytokine expression. We further demonstrated that these DTX-DEX NMs inhibit the synthesis of prostaglandins, especially PGE2, by targeting the cyclooxygenase 2 that is partly responsible for immunosuppressive TME. Therefore, this study presents, for the first time, the engineering of lithocholic acid-derived chimeric NMs that affect the prostaglandin pathway, alter the TME, and mitigate tumour progression with enhanced mice survival.


Asunto(s)
Antineoplásicos , Prostaglandinas , Humanos , Ratones , Animales , Prostaglandinas/farmacología , Linfocitos T CD8-positivos , Docetaxel/uso terapéutico , Docetaxel/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia de Inmunosupresión , Microambiente Tumoral , Línea Celular Tumoral
2.
Int J Cancer ; 152(11): 2410-2423, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602287

RESUMEN

Breast cancer (luminal and triple-negative breast cancer [TNBC]) is the most common cancer among women in India and worldwide. Altered sphingolipid levels have emerged as a common phenomenon during cancer progression. However, these alterations are yet to be translated into robust diagnostic and prognostic markers for cancer. Here, we present the quantified sphingolipids of tumor and adjacent-normal tissues from patients of luminal (n = 70) and TNBC (n = 42) subtype from an Indian cohort using targeted liquid chromatography mass spectrometry. We recorded unique sphingolipid profiles that distinguished luminal and TNBC tumors in comparison to adjacent normal tissue by six-sphingolipid signatures. Moreover, systematic comparison of the profiles of luminal and TNBC tumors provided a unique five-sphingolipid signature distinguishing the two subtypes. We further identified key sphingolipids that can stratify grade II and grade III tumors of luminal and TNBC subtype as well as their lymphovascular invasion status. Therefore, we provide the right evidence to develop these candidate sphingolipids as widely acceptable marker/s capable of diagnosing luminal vs TNBC subtype of breast cancer, and predicting the disease severity by identifying the tumor grade.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama/patología , Esfingolípidos , Recurrencia Local de Neoplasia , Receptores de Estrógenos , Receptores de Progesterona , Biomarcadores de Tumor/análisis
3.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36682028

RESUMEN

Alternative splicing (AS) is a key post-transcriptional modification that helps in increasing protein diversity. Almost 90% of the protein-coding genes in humans are known to undergo AS and code for different transcripts. Some transcripts are associated with diseases such as breast cancer, lung cancer and glioblastoma. Hence, these transcripts can serve as novel therapeutic and prognostic targets for drug discovery. Herein, we have developed a pipeline, Finding Alternative Splicing Events (FASE), as the R package that includes modules to determine the structure and concentration of transcripts using differential AS. To predict the correct structure of expressed transcripts in given conditions, FASE combines the AS events with the information of exons, introns and junctions using graph theory. The estimated concentration of predicted transcripts is reported as the relative expression in terms of log2CPM. Using FASE, we were able to identify several unique transcripts of EMILIN1 and SLK genes in the TCGA-BRCA data, which were validated using RT-PCR. The experimental study demonstrated consistent results, which signify the high accuracy and precision of the developed methods. In conclusion, the developed pipeline, FASE, can efficiently predict novel transcripts that are missed in general transcript-level differential expression analysis. It can be applied selectively from a single gene to simple or complex genome even in multiple experimental conditions for the identification of differential AS-based biomarkers, prognostic targets and novel therapeutics.


Asunto(s)
Empalme Alternativo , Perfilación de la Expresión Génica , Humanos , RNA-Seq , Perfilación de la Expresión Génica/métodos , Genoma , Exones , Análisis de Secuencia de ARN
4.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139656

RESUMEN

Sphingolipids are key signaling biomolecules that play a distinct role in cell proliferation, migration, invasion, drug resistance, metastasis, and apoptosis. Triple-negative (ER-PR-HER2-) and triple-positive (ER+PR+HER2+) breast cancer (called TNBC and TPBC, respectively) subtypes reveal distinct phenotypic characteristics and responses to therapy. Here, we present the sphingolipid profiles of BT-474 and MDA-MB-231 breast cancer cell lines representing the TPBC and TNBC subtypes. We correlated the level of different classes of sphingolipids and the expression of their corresponding metabolizing enzymes with the cell proliferation and cell migration properties of BT-474 and MDA-MB-231 cells. Our results showed that each cell type exhibits a unique sphingolipid profile, and common enzymes such as ceramide kinase (CERK, responsible for the synthesis of ceramide-1-phosphates) are deregulated in these cell types. We showed that siRNA/small molecule-mediated inhibition of CERK can alleviate cell proliferation in BT-474 and MDA-MB-231 cells, and cell migration in MDA-MB-231 cells. We further demonstrated that nanoparticle-mediated delivery of CERK siRNA and hydrogel-mediated sustained delivery of CERK inhibitor to the tumor site can inhibit tumor progression in BT-474 and MDA-MB-231 tumor models. In summary, distinct sphingolipid profiles of TPBC and TNBC representing cell lines provide potential therapeutic targets such as CERK, and nanoparticle/hydrogel mediated pharmacological manipulations of such targets can be explored for future cancer therapeutics.

5.
Nanoscale ; 14(10): 3834-3848, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35195120

RESUMEN

Psoriasis is a systemic, relapsing, and chronic autoimmune inflammatory disease of the skin. Topical use of betamethasone, a glucocorticoid, in the form of creams is a common treatment for psoriasis. However, topical use of these creams is challenging due to the ineffective entrapment of steroids, burst release of the entrapped drugs, poor skin permeability, and high toxicity. Herein, we present the engineering of a betamethasone-loaded topical hydrogel (B-Gel) that can efficiently entrap steroids with high spreadability, and can also maintain the sustained release of drugs. We used an imiquimod (IMQ) induced ear psoriasis model, and demonstrated that topical application of B-Gel can mitigate the autoimmune inflammation reactions, and leads to a reduction in erythema, induration, scaling, and ear thickness. As interleukin 17 (IL-17) secreting T helper 17 (Th17) cells and γδ+ T cells are responsible for psoriasis, B-Gel treatment witnessed a reduction in the infiltration of leukocytes, CD4+ T cells, Th17 T cells, and dermal γδ+ T cells. We further demonstrated that B-Gel mediated reduction of IL-1ß, IL-17, and K16 (marker for keratinocyte proliferation) is responsible for alleviation of psoriasis. Therefore, the non-greasy nature of the hydrogel with a cooling effect provides an alternative for topical application of steroids.


Asunto(s)
Hidrogeles , Psoriasis , Animales , Autoinmunidad , Modelos Animales de Enfermedad , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Psoriasis/tratamiento farmacológico , Piel , Esteroides
7.
Cell Death Dis ; 12(2): 171, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568634

RESUMEN

Global dysregulation of RNA splicing and imbalanced sphingolipid metabolism has emerged as promoters of cancer cell transformation. Here, we present specific signature of alternative splicing (AS) events of sphingolipid genes for each breast cancer subtype from the TCGA-BRCA dataset. We show that ceramide synthase 2 (CERS2) undergoes a unique cassette exon event specifically in Luminal B subtype tumors. We validated this exon 8 skipping event in Luminal B cancer cells compared to normal epithelial cells, and in patient-derived tumor tissues compared to matched normal tissues. Differential AS-based survival analysis shows that this AS event of CERS2 is a poor prognostic factor for Luminal B patients. As Exon 8 corresponds to catalytic Lag1p domain, overexpression of AS transcript of CERS2 in Luminal B cancer cells leads to a reduction in the level of very-long-chain ceramides compared to overexpression of protein-coding (PC) transcript of CERS2. We further demonstrate that this AS event-mediated decrease of very-long-chain ceramides leads to enhanced cancer cell proliferation and migration. Therefore, our results show subtype-specific AS of sphingolipid genes as a regulatory mechanism that deregulates sphingolipids like ceramides in breast tumors, and can be explored further as a suitable therapeutic target.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/enzimología , Movimiento Celular , Proliferación Celular , Ceramidas/metabolismo , Proteínas de la Membrana/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteínas de la Membrana/genética , Invasividad Neoplásica , Transducción de Señal , Esfingosina N-Aciltransferasa/genética , Transcriptoma , Proteínas Supresoras de Tumor/genética
8.
J Photochem Photobiol B ; 175: 211-218, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28915490

RESUMEN

Industrialization has led to the disposal of a massive amount of heavy metals every year, showing perilous effects on humans, marine life and agricultural products. There are numerous chemical and biological approaches available but their implementation is limited due to high cost and low efficiency. Therefore, the present study was focused on the biofilm- based bioremoval of heavy metals (zinc and manganese) using indigenous bacteria isolated from the tannery sludge obtained from Ranipet, Tamil Nadu. The effective isolate was capable of tolerating up to 2000mg/L of zinc and manganese and was further used for development of biofilm on the peels of Cucumis sativus. The isolate was found to be a close neighbour of Pseudomonas beteli by 16S rRNA gene sequencing. The uptake efficiency of the biofilm formed on the substrate was estimated to be 69.9% for zinc and 78.4% for manganese by atomic absorption spectroscopy. The scanning electron microscopy showed the biofilm formation on the substrate and also revealed the presence of heavy metal ions adsorbed on the biofilm. The adsorption kinetics of the substrate followed a heterogeneous mode of adsorption of the heavy metals as it showed a higher R2 value for the Freundlich isotherm kinetics as compared to that of Langmuir. Thus, the peels of Cucumis sativus was assessed to be effective for the bioremoval of zinc and manganese.


Asunto(s)
Bacterias/genética , Biopelículas/crecimiento & desarrollo , Manganeso/metabolismo , Contaminantes Químicos del Agua/metabolismo , Zinc/metabolismo , Adsorción , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Reactores Biológicos , Cinética , Manganeso/química , Microscopía Electrónica de Rastreo , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Especificidad por Sustrato , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...