Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746467

RESUMEN

Animals coordinate their behavior with each other during both cooperative and agonistic social interactions. Such coordination often adopts the form of "turn taking", in which the interactive partners alternate the performance of a behavior. Apart from acoustic communication, how turn taking between animals is coordinated is not well understood. Furthermore, the neural substrates that regulate persistence in engaging in social interactions are poorly studied. Here, we use Siamese fighting fish ( Betta splendens ), to study visually-driven turn-taking aggressive behavior. Using encounters with conspecifics and with animations, we characterize the dynamic visual features of an opponent and the behavioral sequences that drive turn taking. Through a brain-wide screen of neuronal activity during coordinated and persistent aggressive behavior, followed by targeted brain lesions, we find that the caudal portion of the dorsomedial telencephalon, an amygdala-like region, promotes persistent participation in aggressive interactions, yet is not necessary for coordination. Our work highlights how dynamic visual cues shape the rhythm of social interactions at multiple timescales, and points to the pallial amygdala as a region controlling engagement in such interactions. These results suggest an evolutionarily conserved role of the vertebrate pallial amygdala in regulating the persistence of emotional states.

2.
PLoS Comput Biol ; 20(5): e1012053, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709828

RESUMEN

Monosynaptic connectivity mapping is crucial for building circuit-level models of neural computation. Two-photon optogenetic stimulation, when combined with whole-cell recording, enables large-scale mapping of physiological circuit parameters. In this experimental setup, recorded postsynaptic currents are used to infer the presence and strength of connections. For many cell types, nearby connections are those we expect to be strongest. However, when the postsynaptic cell expresses opsin, optical excitation of nearby cells can induce direct photocurrents in the postsynaptic cell. These photocurrent artifacts contaminate synaptic currents, making it difficult or impossible to probe connectivity for nearby cells. To overcome this problem, we developed a computational tool, Photocurrent Removal with Constraints (PhoRC). Our method is based on a constrained matrix factorization model which leverages the fact that photocurrent kinetics are less variable than those of synaptic currents. We demonstrate on real and simulated data that PhoRC consistently removes photocurrents while preserving synaptic currents, despite variations in photocurrent kinetics across datasets. Our method allows the discovery of synaptic connections which would have been otherwise obscured by photocurrent artifacts, and may thus reveal a more complete picture of synaptic connectivity. PhoRC runs faster than real time and is available as open source software.

3.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370650

RESUMEN

In many neural populations, the computationally relevant signals are posited to be a set of 'latent factors' - signals shared across many individual neurons. Understanding the relationship between neural activity and behavior requires the identification of factors that reflect distinct computational roles. Methods for identifying such factors typically require supervision, which can be suboptimal if one is unsure how (or whether) factors can be grouped into distinct, meaningful sets. Here, we introduce Sparse Component Analysis (SCA), an unsupervised method that identifies interpretable latent factors. SCA seeks factors that are sparse in time and occupy orthogonal dimensions. With these simple constraints, SCA facilitates surprisingly clear parcellations of neural activity across a range of behaviors. We applied SCA to motor cortex activity from reaching and cycling monkeys, single-trial imaging data from C. elegans, and activity from a multitask artificial network. SCA consistently identified sets of factors that were useful in describing network computations.

4.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37162966

RESUMEN

Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce "Lightning Pose," an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry, and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post-hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We release a cloud application that allows users to label data, train networks, and predict new videos directly from the browser.

5.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37662298

RESUMEN

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

6.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37961359

RESUMEN

High-density microelectrode arrays (MEAs) have opened new possibilities for systems neuroscience in human and non-human animals, but brain tissue motion relative to the array poses a challenge for downstream analyses, particularly in human recordings. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm which is well suited for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from spikes in the action potential (AP) frequency band, DREDge enables automated tracking of motion at high temporal resolution in the local field potential (LFP) frequency band. In human intraoperative recordings, which often feature fast (period <1s) motion, DREDge correction in the LFP band enabled reliable recovery of evoked potentials, and significantly reduced single-unit spike shape variability and spike sorting error. Applying DREDge to recordings made during deep probe insertions in nonhuman primates demonstrated the possibility of tracking probe motion of centimeters across several brain regions while simultaneously mapping single unit electrophysiological features. DREDge reliably delivered improved motion correction in acute mouse recordings, especially in those made with an recent ultra-high density probe. We also implemented a procedure for applying DREDge to recordings made across tens of days in chronic implantations in mice, reliably yielding stable motion tracking despite changes in neural activity across experimental sessions. Together, these advances enable automated, scalable registration of electrophysiological data across multiple species, probe types, and drift cases, providing a stable foundation for downstream scientific analyses of these rich datasets.

7.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790422

RESUMEN

Neural decoding and its applications to brain computer interfaces (BCI) are essential for understanding the association between neural activity and behavior. A prerequisite for many decoding approaches is spike sorting, the assignment of action potentials (spikes) to individual neurons. Current spike sorting algorithms, however, can be inaccurate and do not properly model uncertainty of spike assignments, therefore discarding information that could potentially improve decoding performance. Recent advances in high-density probes (e.g., Neuropixels) and computational methods now allow for extracting a rich set of spike features from unsorted data; these features can in turn be used to directly decode behavioral correlates. To this end, we propose a spike sorting-free decoding method that directly models the distribution of extracted spike features using a mixture of Gaussians (MoG) encoding the uncertainty of spike assignments, without aiming to solve the spike clustering problem explicitly. We allow the mixing proportion of the MoG to change over time in response to the behavior and develop variational inference methods to fit the resulting model and to perform decoding. We benchmark our method with an extensive suite of recordings from different animals and probe geometries, demonstrating that our proposed decoder can consistently outperform current methods based on thresholding (i.e. multi-unit activity) and spike sorting. Open source code is available at https://github.com/yzhang511/density_decoding.

8.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745388

RESUMEN

A number of calcium imaging methods have been developed to monitor the activity of large populations of neurons. One particularly promising approach, Bessel imaging, captures neural activity from a volume by projecting within the imaged volume onto a single imaging plane, therefore effectively mixing signals and increasing the number of neurons imaged per pixel. These signals must then be computationally demixed to recover the desired neural activity. Unfortunately, currently-available demixing methods can perform poorly in the regime of high imaging density (i.e., many neurons per pixel). In this work we introduce a new pipeline (maskNMF) for demixing dense calcium imaging data. The main idea is to first denoise and temporally sparsen the observed video; this enhances signal strength and reduces spatial overlap significantly. Next we detect neurons in the sparsened video using a neural network trained on a library of neural shapes. These shapes are derived from segmented electron microscopy images input into a Bessel imaging model; therefore no manual selection of "good" neural shapes from the functional data is required here. After cells are detected, we use a constrained non-negative matrix factorization approach to demix the activity, using the detected cells' shapes to initialize the factorization. We test the resulting pipeline on both simulated and real datasets and find that it is able to achieve accurate demixing on denser data than was previously feasible, therefore enabling faithful imaging of larger neural populations. The method also provides good results on more "standard" two-photon imaging data. Finally, because much of the pipeline operates on a significantly compressed version of the raw data and is highly parallelizable, the algorithm is fast, processing large datasets faster than real time.

9.
Nat Commun ; 14(1): 5572, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696814

RESUMEN

What are the spatial and temporal scales of brainwide neuronal activity? We used swept, confocally-aligned planar excitation (SCAPE) microscopy to image all cells in a large volume of the brain of adult Drosophila with high spatiotemporal resolution while flies engaged in a variety of spontaneous behaviors. This revealed neural representations of behavior on multiple spatial and temporal scales. The activity of most neurons correlated (or anticorrelated) with running and flailing over timescales that ranged from seconds to a minute. Grooming elicited a weaker global response. Significant residual activity not directly correlated with behavior was high dimensional and reflected the activity of small clusters of spatially organized neurons that may correspond to genetically defined cell types. These clusters participate in the global dynamics, indicating that neural activity reflects a combination of local and broadly distributed components. This suggests that microcircuits with highly specified functions are provided with knowledge of the larger context in which they operate.


Asunto(s)
Encéfalo , Neuronas , Animales , Drosophila , Aseo Animal , Conocimiento
10.
Inf Process Med Imaging ; 13939: 332-343, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37476079

RESUMEN

Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of C. elegans worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in C. elegans hermaphrodites, fluorescence microscopy of male C. elegans, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.

11.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292661

RESUMEN

Two-photon optogenetics has transformed our ability to probe the structure and function of neural circuits. However, achieving precise optogenetic control of neural ensemble activity has remained fundamentally constrained by the problem of off-target stimulation (OTS): the inadvertent activation of nearby non-target neurons due to imperfect confinement of light onto target neurons. Here we propose a novel computational approach to this problem called Bayesian target optimisation. Our approach uses nonparametric Bayesian inference to model neural responses to optogenetic stimulation, and then optimises the laser powers and optical target locations needed to achieve a desired activity pattern with minimal OTS. We validate our approach in simulations and using data from in vitro experiments, showing that Bayesian target optimisation considerably reduces OTS across all conditions we test. Together, these results establish our ability to overcome OTS, enabling optogenetic stimulation with substantially improved precision.

12.
Artículo en Inglés | MEDLINE | ID: mdl-37388234

RESUMEN

High-density electrophysiology probes have opened new possibilities for systems neuroscience in human and non-human animals, but probe motion poses a challenge for downstream analyses, particularly in human recordings. We improve on the state of the art for tracking this motion with four major contributions. First, we extend previous decentralized methods to use multiband information, leveraging the local field potential (LFP) in addition to spikes. Second, we show that the LFP-based approach enables registration at sub-second temporal resolution. Third, we introduce an efficient online motion tracking algorithm, enabling the method to scale up to longer and higher-resolution recordings, and possibly facilitating real-time applications. Finally, we improve the robustness of the approach by introducing a structure-aware objective and simple methods for adaptive parameter selection. Together, these advances enable fully automated scalable registration of challenging datasets from human and mouse.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37388235

RESUMEN

Multimodal microscopy experiments that image the same population of cells under different experimental conditions have become a widely used approach in systems and molecular neuroscience. The main obstacle is to align the different imaging modalities to obtain complementary information about the observed cell population (e.g., gene expression and calcium signal). Traditional image registration methods perform poorly when only a small subset of cells are present in both images, as is common in multimodal experiments. We cast multimodal microscopy alignment as a cell subset matching problem. To solve this non-convex problem, we introduce an efficient and globally optimal branch-and-bound algorithm to find subsets of point clouds that are in rotational alignment with each other. In addition, we use complementary information about cell shape and location to compute the matching likelihood of cell pairs in two imaging modalities to further prune the optimization search tree. Finally, we use the maximal set of cells in rigid rotational alignment to seed image deformation fields to obtain a final registration result. Our framework performs better than the state-of-the-art histology alignment approaches regarding matching quality and is faster than manual alignment, providing a viable solution to improve the throughput of multimodal microscopy experiments.

14.
Neuron ; 110(17): 2771-2789.e7, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35870448

RESUMEN

A key aspect of neuroscience research is the development of powerful, general-purpose data analyses that process large datasets. Unfortunately, modern data analyses have a hidden dependence upon complex computing infrastructure (e.g., software and hardware), which acts as an unaddressed deterrent to analysis users. Although existing analyses are increasingly shared as open-source software, the infrastructure and knowledge needed to deploy these analyses efficiently still pose significant barriers to use. In this work, we develop Neuroscience Cloud Analysis As a Service (NeuroCAAS): a fully automated open-source analysis platform offering automatic infrastructure reproducibility for any data analysis. We show how NeuroCAAS supports the design of simpler, more powerful data analyses and that many popular data analysis tools offered through NeuroCAAS outperform counterparts on typical infrastructure. Pairing rigorous infrastructure management with cloud resources, NeuroCAAS dramatically accelerates the dissemination and use of new data analyses for neuroscientific discovery.


Asunto(s)
Análisis de Datos , Neurociencias , Nube Computacional , Reproducibilidad de los Resultados , Programas Informáticos
15.
PLoS Comput Biol ; 18(4): e1009991, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35395020

RESUMEN

Cellular barcoding methods offer the exciting possibility of 'infinite-pseudocolor' anatomical reconstruction-i.e., assigning each neuron its own random unique barcoded 'pseudocolor,' and then using these pseudocolors to trace the microanatomy of each neuron. Here we use simulations, based on densely-reconstructed electron microscopy microanatomy, with signal structure matched to real barcoding data, to quantify the feasibility of this procedure. We develop a new blind demixing approach to recover the barcodes that label each neuron, and validate this method on real data with known barcodes. We also develop a neural network which uses the recovered barcodes to reconstruct the neuronal morphology from the observed fluorescence imaging data, 'connecting the dots' between discontiguous barcode amplicon signals. We find that accurate recovery should be feasible, provided that the barcode signal density is sufficiently high. This study suggests the possibility of mapping the morphology and projection pattern of many individual neurons simultaneously, at high resolution and at large scale, via conventional light microscopy.


Asunto(s)
Código de Barras del ADN Taxonómico , Imagen Óptica , Código de Barras del ADN Taxonómico/métodos , Neuronas
16.
Cell ; 185(6): 1082-1100.e24, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216674

RESUMEN

We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 µm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.


Asunto(s)
Neocórtex , Animales , Ratones , Microscopía Electrónica , Neocórtex/fisiología , Orgánulos , Células Piramidales/fisiología , Sinapsis/fisiología
17.
PLoS Comput Biol ; 17(9): e1009439, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34550974

RESUMEN

Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.


Asunto(s)
Algoritmos , Inteligencia Artificial/estadística & datos numéricos , Conducta Animal , Grabación en Video , Animales , Biología Computacional , Simulación por Computador , Cadenas de Markov , Ratones , Modelos Estadísticos , Redes Neurales de la Computación , Aprendizaje Automático Supervisado/estadística & datos numéricos , Aprendizaje Automático no Supervisado/estadística & datos numéricos , Grabación en Video/estadística & datos numéricos
18.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34415309

RESUMEN

Sex differences in the brain are prevalent throughout the animal kingdom and particularly well appreciated in the nematode Caenorhabditis elegans, where male animals contain a little-studied set of 93 male-specific neurons. To make these neurons amenable for future study, we describe here how a multicolor reporter transgene, NeuroPAL, is capable of visualizing the distinct identities of all male-specific neurons. We used NeuroPAL to visualize and characterize a number of features of the male-specific nervous system. We provide several proofs of concept for using NeuroPAL to identify the sites of expression of gfp-tagged reporter genes and for cellular fate analysis by analyzing the effect of removal of several developmental patterning genes on neuronal identity acquisition. We use NeuroPAL and its intrinsic cohort of more than 40 distinct differentiation markers to show that, even though male-specific neurons are generated throughout all four larval stages, they execute their terminal differentiation program in a coordinated manner in the fourth larval stage. This coordinated wave of differentiation, which we call 'just-in-time' differentiation, couples neuronal maturation programs with the appearance of sexual organs.


Asunto(s)
Caenorhabditis elegans/fisiología , Diferenciación Celular/fisiología , Sistema Nervioso/fisiopatología , Animales , Encéfalo/fisiología , Caenorhabditis elegans/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros/genética , Masculino , Neurogénesis/genética , Neuronas/fisiología , Transgenes/genética
19.
Neural Comput ; 33(7): 1719-1750, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34411268

RESUMEN

Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs). Our approach uses neural networks to improve on existing decoders in both accuracy and scalability. Trained and validated on real retinal spike data from more than 1000 simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of nonlinear computations for accurate decoding of the fine structures of visual stimuli. Specifically, high-pass spatial features of natural images can only be decoded using nonlinear techniques, while low-pass features can be extracted equally well by linear and nonlinear methods. Together, these results advance the state of the art in decoding natural stimuli from large populations of neurons.


Asunto(s)
Interfaces Cerebro-Computador , Células Ganglionares de la Retina , Animales , Macaca , Redes Neurales de la Computación , Retina
20.
Nat Protoc ; 16(7): 3241-3263, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34075229

RESUMEN

Measurements of neuronal activity across brain areas are important for understanding the neural correlates of cognitive and motor processes such as attention, decision-making and action selection. However, techniques that allow cellular resolution measurements are expensive and require a high degree of technical expertise, which limits their broad use. Wide-field imaging of genetically encoded indicators is a high-throughput, cost-effective and flexible approach to measure activity of specific cell populations with high temporal resolution and a cortex-wide field of view. Here we outline our protocol for assembling a wide-field macroscope setup, performing surgery to prepare the intact skull and imaging neural activity chronically in behaving, transgenic mice. Further, we highlight a processing pipeline that leverages novel, cloud-based methods to analyze large-scale imaging datasets. The protocol targets laboratories that are seeking to build macroscopes, optimize surgical procedures for long-term chronic imaging and/or analyze cortex-wide neuronal recordings. The entire protocol, including steps for assembly and calibration of the macroscope, surgical preparation, imaging and data analysis, requires a total of 8 h. It is designed to be accessible to laboratories with limited expertise in imaging methods or interest in high-throughput imaging during behavior.


Asunto(s)
Conducta Animal/fisiología , Corteza Cerebral/citología , Corteza Cerebral/diagnóstico por imagen , Imagenología Tridimensional/métodos , Animales , Artefactos , Hemodinámica/fisiología , Ratones Transgénicos , Cráneo/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA