Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 33, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273366

RESUMEN

Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Ratones , Diabetes Mellitus/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Ependimogliales/metabolismo , Neuroglía/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Retina/metabolismo
2.
Front Med (Lausanne) ; 8: 678438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552939

RESUMEN

Preterm infants frequently suffer from pulmonary complications due to a physiological and structural lung immaturity resulting in significant morbidity and mortality. Novel in vitro and in vivo models are required to study the underlying mechanisms of late lung maturation and to facilitate the development of new therapeutic strategies. Organoids recapitulate essential aspects of structural organization and possibly organ function, and can be used to model developmental and disease processes. We aimed at generating fetal lung organoids (LOs) and to functionally characterize this in vitro model in comparison to primary lung epithelial cells and lung explants ex vivo. LOs were generated with alveolar and endothelial cells from fetal rat lung tissue, using a Matrigel-gradient and air-liquid-interface culture conditions. Immunocytochemical analysis showed that the LOs consisted of polarized epithelial cell adhesion molecule (EpCAM)-positive cells with the apical membrane compartment facing the organoid lumen. Expression of the alveolar type 2 cell marker, RT2-70, and the Club cell marker, CC-10, were observed. Na+ transporter and surfactant protein mRNA expression were detected in the LOs. First time patch clamp analyses demonstrated the presence of several ion channels with specific electrophysiological properties, comparable to vital lung slices. Furthermore, the responsiveness of LOs to glucocorticoids was demonstrated. Finally, maturation of LOs induced by mesenchymal stem cells confirmed the convenience of the model to test and establish novel therapeutic strategies. The results showed that fetal LOs replicate key biological lung functions essential for lung maturation and therefore constitute a suitable in vitro model system to study lung development and related diseases.

3.
Anat Histol Embryol ; 47(6): 573-582, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30155916

RESUMEN

Ca2+ -binding proteins are differentially expressed in the nervous system; their functional role often remains unclear. This immunohistochemical study aimed at characterising and comparing the expression pattern of the Ca2+ -binding proteins calbindin (Calb), calretinin (Calr) and parvalbumin (Parv) in the retina of four species of macaque monkeys: Macaca fascicularis (cynomolgus macaque), M. mulatta (rhesus macaque), M. thibetana (Tibetan macaque) and M. fuscata (Japanese macaque). Calb was found in cone photoreceptors and in a subset of bipolar cells. Calr was expressed in a subpopulation of amacrine cells. Parv was present in horizontal and ganglion cells. In addition, Müller cells were stained using antibodies against the specific marker cellular retinaldehyde-binding protein (CRALBP). Immunostainings were used for calculation of the density of different cell populations. The expression pattern was similar between the examined species and between retinal regions.


Asunto(s)
Células Amacrinas/metabolismo , Calbindina 1/metabolismo , Calbindina 2/metabolismo , Células Ependimogliales/metabolismo , Inmunohistoquímica/veterinaria , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Proteínas Portadoras/metabolismo , Macaca fascicularis/anatomía & histología , Macaca fascicularis/clasificación , Macaca fascicularis/metabolismo , Macaca mulatta/anatomía & histología , Macaca mulatta/clasificación , Macaca mulatta/metabolismo , Parvalbúminas/metabolismo
4.
Neurosci Lett ; 670: 69-74, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29391217

RESUMEN

Leukemia inhibitory factor (LIF) is a cytokine that exerts different effects in the nervous system. It is involved in neuronal injuries and diseases and is assumed to be neuroprotective and to regulate reactive gliosis. In LIF-deficient (LIF-/-) mice, expression of glial fibrillary acidic protein in retinal Müller glial cells as a hallmark of reactive gliosis is suppressed during retinal degenerations. Here, we detected expression of LIF and its receptors in Müller cells of the murine retina. Moreover, electrophysiological alterations of Müller cells 7 days after transient retinal ischemia were studied by the patch-clamp technique. The amplitude of inward currents in Müller cells from the postischemic retina was reduced to 51% in wild type and to 70% in LIF-/- mice. This demonstrates that decrease of inward currents takes place in reactive Müller cells even in the absence of LIF.


Asunto(s)
Células Ependimogliales/fisiología , Isquemia/fisiopatología , Factor Inhibidor de Leucemia/metabolismo , Retina/fisiopatología , Vasos Retinianos/fisiopatología , Animales , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Isquemia/metabolismo , Isquemia/patología , Factor Inhibidor de Leucemia/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Retina/metabolismo , Retina/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
5.
Glia ; 65(7): 1059-1071, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370368

RESUMEN

Nervous tissue is characterized by a tight structural association between glial cells and neurons. It is well known that glial cells support neuronal functions, but their role under pathologic conditions is less well understood. Here, we addressed this question in vivo using an experimental model of retinal ischemia and transgenic mice for glia-specific inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent exocytosis. Transgene expression reduced glutamate, but not ATP release from single Müller cells, impaired glial volume regulation under normal conditions and reduced neuronal dysfunction and death in the inner retina during the early stages of ischemia. Our study reveals that the SNARE-dependent exocytosis in glial cells contributes to neurotoxicity during ischemia in vivo and suggests glial exocytosis as a target for therapeutic approaches.


Asunto(s)
Exocitosis/genética , Isquemia/complicaciones , Degeneración Nerviosa/etiología , Retina/patología , Células Ganglionares de la Retina/metabolismo , Proteínas SNARE/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Doxiciclina/uso terapéutico , Células Ependimogliales/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Filamentos Intermedios/metabolismo , Isquemia/patología , Luz , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa C-alfa/metabolismo , Receptores Purinérgicos P2Y1/deficiencia , Receptores Purinérgicos P2Y1/genética , Proteínas SNARE/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Glia ; 65(1): 62-74, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27706854

RESUMEN

Tractional forces or mechanical stimulation are known to induce calcium responses in retinal glial cells. The aim of the study was to determine the characteristics of calcium responses in Müller glial cells of the avascular guinea pig retina induced by focal mechanical stimulation. Freshly isolated retinal wholemounts were loaded with Mitotracker Deep Red (to fill Müller cells) and the calcium-sensitive dye Fluo-4/AM. The inner retinal surface was mechanically stimulated with a micropipette tip for 10 ms. Stimulation induced two different cytosolic calcium responses in Müller cells with different kinetics in dependence on the distance from the stimulation site. Müller cells near the stimulation site displayed an immediate and long-lasting calcium response with high amplitude. This response was mediated by calcium influx from the extracellular space likely triggered by activation of ATP-insensitive P2 receptors. More distant Müller cells displayed, with a delay of 2.4 s, transient calcium responses which propagated laterally in a wave-like fashion. Propagating calcium waves were induced by a calcium-independent release of ATP from Müller cells near the stimulation site, and were mediated by a release of calcium from internal stores triggered by ATP, acting in part at P2Y1 receptors. The data suggest that mechanically stimulated Müller cells of the guinea pig retina release ATP which induces a propagating calcium wave in surrounding Müller cells. Propagating calcium waves may be implicated in the spatial regulation of the neuronal activity and homeostatic glial functions, and may transmit gliosis-inducing signals across the retina. Mechanical stimulation of guinea pig Müller cells induces two calcium responses: an immediate response around the stimulation site and propagating calcium waves. Both responses are differentially mediated by activation of purinergic receptors. GLIA 2016 GLIA 2017;65:62-74.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Neuroglía/metabolismo , Retina/citología , Retina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Gliosis/metabolismo , Cobayas , Ratones , Receptores Purinérgicos/metabolismo
7.
Glia ; 65(4): 533-568, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27767232

RESUMEN

Müller cells are the dominant macroglial cells in the retina of all vertebrates. They fulfill a variety of functions important for retinal physiology, among them spatial buffering of K+ ions and uptake of glutamate and other neurotransmitters. To this end, Müller cells express inwardly rectifying K+ channels and electrogenic glutamate transporters. Moreover, a lot of voltage- and ligand-gated ion channels, aquaporin water channels, and electrogenic transporters are expressed in Müller cells, some of them in a species-specific manner. For example, voltage-dependent Na+ channels are found exclusively in some but not all mammalian species. Whereas a lot of data exist from amphibians and mammals, the results from other vertebrates are sparse. It is the aim of this review to present a survey on Müller cell electrophysiology covering all classes of vertebrates. The focus is on functional studies, mainly performed using the whole-cell patch-clamp technique. However, data about the expression of membrane channels and transporters from immunohistochemistry are also included. Possible functional roles of membrane channels and transporters are discussed. Obviously, electrophysiological properties involved in the main functions of Müller cells developed early in vertebrate evolution. GLIA 2017;65:533-568.


Asunto(s)
Células Ependimogliales/fisiología , Potenciales de la Membrana/fisiología , Fisiología Comparada , Retina/citología , Animales , Células Ependimogliales/clasificación , Humanos , Vertebrados/anatomía & histología
8.
Neurochem Res ; 41(10): 2598-2606, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27278757

RESUMEN

Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-ß1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-ß1 from Müller cells.


Asunto(s)
Endotelinas/farmacología , Células Ependimogliales/efectos de los fármacos , Neuroglía/efectos de los fármacos , Ósmosis/efectos de los fármacos , Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Tamaño de la Célula/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Ependimogliales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuroglía/metabolismo , Presión Osmótica/efectos de los fármacos , Ratas Long-Evans , Ratas Sprague-Dawley , Retina/metabolismo
9.
Neurochem Res ; 41(7): 1784-96, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27038933

RESUMEN

Retinal glial (Müller) cells possess an endogenous purinergic signal transduction cascade which normally prevents cellular swelling in osmotic stress. The cascade can be activated by osmotic or glutamate receptor-dependent ATP release. We determined whether activation of this cascade is altered in Müller cells of transgenic rats that suffer from a slow photoreceptor degeneration due to the expression of a truncated human cilia gene polycystin-2 (CMV-PKD21/703 HA). Age-matched Sprague-Dawley rats served as control. Retinal slices were superfused with a hypoosmotic solution (60 % osmolarity). Müller cells in retinas of PKD21/703 rats swelled immediately in hypoosmotic stress; this was not observed in control retinas. Pharmacological blockade of P2Y1 or adenosine A1 receptors induced osmotic swelling of Müller cells from control rats. The swelling induced by the P2Y1 receptor antagonist was mediated by induction of oxidative-nitrosative stress, mitochondrial dysfunction, production of inflammatory lipid mediators, and a sodium influx from the extracellular space. Exogenous VEGF or glutamate prevented the hypoosmotic swelling of Müller cells from PKD21/703 rats; this effect was mediated by activation of the purinergic signaling cascade. In neuroretinas of PKD21/703 rats, the gene expression levels of P2Y1 and A1 receptors, pannexin-1, connexin 45, NTPDases 1 and 2, and various subtypes of nucleoside transporters are elevated compared to control. The data may suggest that the osmotic swelling of Müller cells from PKD21/703 rats is caused by an abrogation of the osmotic ATP release while the glutamate-induced ATP release is functional. In the normal retina, ATP release and autocrine P2Y1 receptor activation serve to inhibit the induction of oxidative-nitrosative stress, mitochondrial dysfunction, and production of inflammatory lipid mediators, which otherwise will induce a sodium influx and cytotoxic Müller cell swelling under anisoosmotic conditions. Purinergic receptors may represent a target for the protection of retinal glial cells from mitochondrial oxidative stress.


Asunto(s)
Tamaño de la Célula , Células Ependimogliales/metabolismo , Receptor de Adenosina A1/fisiología , Receptores Purinérgicos P2Y1/fisiología , Retina/metabolismo , Canales Catiónicos TRPP/biosíntesis , Animales , Células Ependimogliales/patología , Regulación de la Expresión Génica , Humanos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Retina/patología , Canales Catiónicos TRPP/genética
10.
Graefes Arch Clin Exp Ophthalmol ; 254(3): 497-503, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26743749

RESUMEN

BACKGROUND: Osmotic swelling of neurons and glial cells contributes to retinal edema and neurodegeneration. BDNF, a major neuroprotectant in the retina, was shown to inhibit osmotic swelling of glial (Müller) and bipolar cells in the rat retina; the effect of BDNF on the bipolar cell swelling is mediated by inducing a release of neuroprotective cytokines from Müller cells (Berk et al., Neuroscience 295:175-186, 2015). We determined whether BDNF-mediated cell volume regulation was altered after transient retinal ischemia. METHODS: Retinal slices from the eyes of rats that underwent a 1-h pressure-induced retinal ischemia and from control eyes were superfused with a hypoosmotic solution. RESULTS: Exogenous BDNF prevented osmotic swelling of Müller cells in both control and post-ischemic retinal slices. BDNF also prevented osmotic swelling of bipolar cells in the control retina, but not in the ischemic retina. On the other hand, exogenous bFGF prevented the swelling of both Müller and bipolar cells in the ischemic retina. Freshly isolated Müller cells of control retinas displayed immunoreactivity of truncated but not full-length TrkB. In contrast, Müller cells of post-ischemic retinas displayed immunoreactivity of both TrkB isoforms. Bipolar cells isolated from control and post-ischemic retinas were immunolabeled for both TrkB isoforms. CONCLUSIONS: The data may suggest that the ischemic abrogation of the BDNF effect in bipolar cells is related to altered BDNF receptor expression in Müller cells. Glial upregulation of full-length TrkB may support the survival of Müller cells in the ischemic retina, but may impair the BDNF-induced release of neuroprotective cytokines such as bFGF from Müller cells.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Tamaño de la Célula/efectos de los fármacos , Células Ependimogliales/metabolismo , Isquemia/metabolismo , Receptor trkB/metabolismo , Células Bipolares de la Retina/metabolismo , Vasos Retinianos/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Ependimogliales/patología , Femenino , Inmunohistoquímica , Isquemia/patología , Masculino , Presión Osmótica , Ratas , Ratas Long-Evans , Células Bipolares de la Retina/patología , Vasos Retinianos/patología , Transducción de Señal
11.
Vis Neurosci ; 33: E013, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-28359347

RESUMEN

Retinal Müller glial cells have been shown to undergo reactive gliosis in a variety of retinal diseases. Upregulation of glial fibrillary acidic protein (GFAP) is a hallmark of Müller cell activation. Reactive gliosis after retinal detachment or ischemia/reperfusion is characterized by hypertrophy and downregulation of inwardly rectifying K+ (Kir) currents. However, this kind of physiological alteration could not be detected in slowly progressing retinal degenerations. The photoreceptor toxin N-methyl-N-nitrosourea (MNU) leads to the rapid loss of cells in the outer nuclear layer and subsequent Müller cell activation. Here, we investigated whether Müller cells from MNU-treated mice exhibit reactive gliosis. We found that Müller cells showed increased GFAP expression and increased membrane capacitance, indicating hypertrophy. Membrane potential and Kir channel-mediated K+ currents were not significantly altered whereas Kir4.1 mRNA expression and Kir-mediated inward current densities were markedly decreased. This suggests that MNU-induced Müller cell gliosis is characterized by plasma membrane increase without alteration in the membrane content of Kir channels. Taken together, our findings show that Müller cells of MNU-treated mice are reactive and respond with a form of gliosis which is characterized by cellular hypertrophy but no changes in Kir current amplitudes.


Asunto(s)
Alquilantes/toxicidad , Células Ependimogliales/patología , Gliosis/patología , Metilnitrosourea/toxicidad , Degeneración Retiniana/patología , Animales , Proteínas Portadoras/metabolismo , Células Ependimogliales/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Inmunohistoquímica , Inyecciones Intraperitoneales , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo
12.
Neurosci Lett ; 610: 13-8, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26499958

RESUMEN

Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Sigma (σ) receptor activation is known to have neuroprotective effects in the retina. Here, we show that the nonselective σ receptor agonist ditolylguanidine, and the selective σ1 receptor agonist PRE-084, inhibit the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices with a hypoosmotic solution containing barium ions. In contrast, PRE-084 did not inhibit the osmotic swelling of bipolar cell somata. The effects of σ receptor agonists on the Müller cell swelling were abrogated in the presence of blockers of metabotropic glutamate and purinergic P2Y1 receptors, respectively, suggesting that σ receptor activation triggers activation of a glutamatergic-purinergic signaling cascade which is known to prevent the osmotic Müller cell swelling. The swelling-inhibitory effect of 17ß-estradiol was prevented by the σ1 receptor antagonist BD1047, suggesting that the effect is mediated by σ1 receptor activation. The data may suggest that the neuroprotective effect of σ receptor activation in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial cells.


Asunto(s)
Células Ependimogliales/citología , Receptores de Glutamato/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Animales , Tamaño de la Célula , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Estradiol/farmacología , Etilenodiaminas/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Técnicas In Vitro , Masculino , Morfolinas/farmacología , Ósmosis , Antagonistas del Receptor Purinérgico P2/farmacología , Ratas Long-Evans , Receptores de Glutamato/genética , Receptores Purinérgicos P2Y1/genética , Receptores sigma/agonistas , Receptores sigma/antagonistas & inhibidores , Receptores sigma/metabolismo , Activación Transcripcional
13.
Neurochem Res ; 41(4): 677-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26446037

RESUMEN

Glial cells in the diseased nervous system undergo a process known as reactive gliosis. Gliosis of retinal Müller glial cells is characterized by an upregulation of glial fibrillary acidic protein and frequently by a reduction of inward K(+) current amplitudes. Purinergic signaling is assumed to be involved in gliotic processes. As previously shown, lack of the nucleotide receptor P2Y1 leads to an altered regulation of K(+) currents in Müller cells of the ischemic retina. Here, we asked first whether this effect is mediated by the IP3 receptor subtype 2 (IP3R2) known as the major downstream signaling target of P2Y1 in Müller cells. The second question was whether lack of IP3R2 affects neuronal survival in the control and ischemic retina. Ischemia was induced in wild type and IP3R2-deficient (IP 3 R2 (-/-)) mice by transient elevation of the intraocular pressure. Immunostaining and TUNEL labelling were used to quantify neuronal cell loss. The downregulation of inward K(+) currents in Müller cells from ischemic IP 3 R2 (-/-) retinae was less strong than in wild type animals. The reduction of the number of cells in the ganglion cell layer and of calretinin- and calbindin-positive cells 7 days after ischemia was similar in wild type and IP 3 R2 (-/-) mice. However, IP3R2 deficiency led to an increased number of TUNEL-positive cells in the outer nuclear layer at 1 day and to an enhanced postischemic loss of photoreceptors 7 days after ischemia. This implies that IP3R2 is involved in some but not all aspects of signaling in Müller cells after an ischemic insult.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/genética , Isquemia/patología , Retina/patología , Animales , Recuento de Células , Células Ependimogliales/patología , Gliosis/patología , Ratones Noqueados , Neuronas/patología
14.
FASEB J ; 29(12): 4815-28, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26251181

RESUMEN

Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/genética , Retina/fisiopatología , Vimentina/genética , Animales , Supervivencia Celular , Electrorretinografía , Isquemia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Vasos Retinianos/fisiopatología
15.
Neurochem Res ; 40(4): 651-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25567481

RESUMEN

Retinal glial (Müller) cells release ATP upon osmotic stress or activation of metabotropic glutamate receptors. ATP inhibits the osmotic Müller cell swelling by activation of P2Y1 receptors. In the present study, we determined the molecular pathways of the ATP release from Müller cells in slices of the rat retina. Administration of the ATP/ADPase apyrase induced a swelling of Müller cells under hypoosmotic conditions, and prevented the swelling-inhibitory effect of glutamate, suggesting that swelling inhibition is mediated by extracellular ATP. A hypoosmotic swelling of Müller cells was also observed in the presence of a blocker of multidrug resistance channels (MK-571), a CFTR inhibitor (glibenclamide), and connexin hemichannel blockers (18-α-glycyrrhetinic acid, 100 µM carbenoxolone). The swelling-inhibitory effect of glutamate was prevented by MK-571, the connexin hemichannel blockers, and a pannexin-1 hemichannel blocker (5 µM carbenoxolone). The p-glycoprotein blocker verapamil had no effect. As revealed by single-cell RT-PCR, subpopulations of Müller cells expressed mRNAs for pannexin-1 and -2, and connexins 30, 30.3, 32, 43, 45, and 46. The data may suggest that rat Müller cells release ATP by multidrug resistance channels, CFTR, and connexin hemichannels in response to osmotic stress, while glutamate induces a release of ATP via multidrug resistance channels, connexin hemichannels, and pannexin-1.


Asunto(s)
Adenosina Trifosfato/metabolismo , Células Ependimogliales/metabolismo , Ácido Glutámico/metabolismo , Animales , Anexinas/genética , Conexinas/genética , Femenino , Masculino , Presión Osmótica , ARN Mensajero/genética , Ratas , Ratas Long-Evans , Transducción de Señal
16.
J Neurochem ; 131(3): 303-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25041175

RESUMEN

Osmotic swelling of neurons and glial cells contributes to the development of retinal edema and neurodegeneration. We show that nerve growth factor (NGF) inhibits the swelling of glial (Müller) and bipolar cells in rat retinal slices induced by barium-containing hypoosmotic solution. NGF also reduced Müller and bipolar cell swelling in the post-ischemic retina. On the other hand, NGF prevented the swelling of freshly isolated Müller cells, but not of isolated bipolar cells, suggesting that NGF induces a release of factors from Müller cells that inhibit bipolar cell swelling in retinal slices. The inhibitory effect of NGF on Müller cell swelling was mediated by activation of TrkA (the receptor tyrosine kinase A), but not p75(NTR) , and was prevented by blockers of metabotropic glutamate, P2Y1 , adenosine A1 , and fibroblast growth factor receptors. Basic fibroblast growth factor fully inhibited the swelling of freshly isolated Müller cells, but only partially the swelling of isolated bipolar cells. In addition, glial cell line-derived neurotrophic factor and transforming growth factor-ß1, but not epidermal growth factor and platelet-derived growth factor, reduced the swelling of bipolar cells. Both Müller and bipolar cells displayed TrkA immunoreactivity, while Müller cells were also immunostained for p75(NTR) and NGF. The data suggest that the neuroprotective effect of NGF in the retina is in part mediated by prevention of the cytotoxic glial and bipolar cell swelling. Cytotoxic cell swelling contributes to retinal neurodegeneration. Nerve growth factor (NGF) inhibits the osmotic swelling of glial cells by acting at TrkA, release of bFGF, and opening of K(+) and Cl(-) channels. The NGF-induced glial release of cytokines like bFGF inhibits the osmotic swelling of bipolar cells, suggesting that the neuroprotective effect of NGF is in part mediated by prevention of cytotoxic cell swelling.


Asunto(s)
Citocinas/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Células Bipolares de la Retina/efectos de los fármacos , Células Bipolares de la Retina/metabolismo , Animales , Tamaño de la Célula/efectos de los fármacos , Femenino , Factores de Crecimiento de Fibroblastos/fisiología , Masculino , Presión Osmótica , Ratas , Ratas Long-Evans , Receptores de Factor de Crecimiento Nervioso/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
17.
Neurosci Lett ; 578: 143-7, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24993296

RESUMEN

It has been proposed that glutamate serves as a mediator between neurons and satellite glial cells (SGCs) in sensory ganglia and that SGCs release glutamate. Using a novel method, we studied glutamate release from SGCs from murine trigeminal ganglia. Sensory neurons with adhering SGCs were enzymatically isolated from wild type and transgenic mice in which vesicular exocytosis was suppressed in glial cells. Extracellular glutamate was detected by microfluorimetry. After loading the cells with a photolabile Ca(2+) chelator, the intracellular Ca(2+) concentration was raised in SGCs by a UV pulse, which resulted in glutamate release. The amount of released glutamate was decreased in cells with suppressed exocytosis and after pharmacological block of hemichannels. The data demonstrate that SGCs of the trigeminal ganglion release glutamate in a Ca(2+)-dependent manner.


Asunto(s)
Señalización del Calcio , Glutamatos/metabolismo , Células Satélites Perineuronales/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Secretoras , Células Receptoras Sensoriales/metabolismo
18.
PLoS One ; 9(5): e97155, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24831221

RESUMEN

BACKGROUND: Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. METHODS: We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. RESULTS: Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100ß, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. CONCLUSION: Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.


Asunto(s)
Células Ependimogliales/citología , Células Fotorreceptoras de Vertebrados/citología , Canales de Potasio de Rectificación Interna/metabolismo , Retina/fisiología , Caimanes y Cocodrilos/metabolismo , Animales , Colorantes Fluorescentes/química , Glutamatos/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Potasio/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Estructura Terciaria de Proteína , Retina/metabolismo , Transducción de Señal
19.
PLoS One ; 8(6): e61631, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23755094

RESUMEN

BACKGROUND: Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degeneration. We characterized the reactivity of Müller glial cells in retinas of rats that express defective polycystin-2. METHODS: Age-matched Sprague-Dawley rats served as control. Retinal slices were immunostained for intermediate filaments, the potassium channel Kir4.1, and aquaporins 1 and 4. The potassium conductance of isolated Müller cells was recorded by whole-cell patch clamping. The osmotic swelling characteristics of Müller cells were determined by superfusion of retinal slices with a hypoosmotic solution. FINDINGS: Müller cells in retinas of transgenic rats displayed upregulation of GFAP and nestin which was not observed in control cells. Whereas aquaporin-1 labeling of photoreceptor cells disappeared along with the degeneration of the cells, aquaporin-1 emerged in glial cells in the inner retina of transgenic rats. Aquaporin-4 was upregulated around degenerating photoreceptor cells. There was an age-dependent redistribution of Kir4.1 in retinas of transgenic rats, with a more even distribution along glial membranes and a downregulation of perivascular Kir4.1. Müller cells of transgenic rats displayed a slight decrease in their Kir conductance as compared to control. Müller cells in retinal tissues from transgenic rats swelled immediately under hypoosmotic stress; this was not observed in control cells. Osmotic swelling was induced by oxidative-nitrosative stress, mitochondrial dysfunction, and inflammatory lipid mediators. INTERPRETATION: Cellular swelling suggests that the rapid water transport through Müller cells in response to osmotic stress is altered as compared to control. The dislocation of Kir4.1 will disturb the retinal potassium and water homeostasis, and osmotic generation of free radicals and inflammatory lipids may contribute to neurovascular injury.


Asunto(s)
Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/patología , Canales Catiónicos TRPP/metabolismo , Envejecimiento/patología , Animales , Acuaporina 1/genética , Acuaporina 1/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Membrana Celular/metabolismo , Separación Celular , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Mediadores de Inflamación/metabolismo , Filamentos Intermedios/metabolismo , Nestina/genética , Nestina/metabolismo , Ósmosis , Estrés Oxidativo , Células Fotorreceptoras de Vertebrados/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Transporte de Proteínas , Ratas Sprague-Dawley , Degeneración Retiniana/metabolismo , Vimentina/genética , Vimentina/metabolismo
20.
Ophthalmic Res ; 50(4): 209-14, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24052001

RESUMEN

BACKGROUND/AIMS: Osmotic swelling of Müller cells is a common phenomenon in animal models of ischemic and diabetic retinopathies. Müller cells possess a swelling-inhibitory purinergic signaling cascade which can be activated by various receptor ligands including vascular endothelial growth factor (VEGF) and glutamate. Here, we investigated whether deletion of P2Y1 (P2Y1R) and adenosine A1 receptors (A1AR), and of inositol-1,4,5-trisphosphate-receptor type 2 (IP3R2), in mice affects the inhibitory action of VEGF and glutamate on Müller cell swelling. METHODS: The cross-sectional area of Müller cell somata was recorded after a 4-min superfusion of retinal slices with a hypoosmotic solution. RESULTS: Hypoosmolarity induced a swelling of Müller cells from P2Y1R(-/-), A1AR(-/-) and IP3R2(-/-) mice, but not from wild-type mice. Swelling of wild-type Müller cells was induced by hypoosmotic solution containing barium chloride. Whereas VEGF inhibited the swelling of wild-type Müller cells, it had no swelling-inhibitory effect in cells from A1AR(-/-) and IP3R2(-/-) mice. Glutamate inhibited the swelling of wild-type Müller cells but not of cells from P2Y1R(-/-), A1AR(-/-) and IP3R2(-/-) animals. CONCLUSION: The swelling-inhibitory effects of VEGF and glutamate in murine Müller cells is mediated by transactivation of P2Y1R and A1AR, as well as by intracellular calcium signaling via activation of IP3R2.


Asunto(s)
Células Ependimogliales/fisiología , Neuroglía/fisiología , Presión Osmótica/fisiología , Transducción de Señal/fisiología , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Señalización del Calcio/fisiología , Inhibidores Enzimáticos/farmacología , Células Ependimogliales/efectos de los fármacos , Ácido Glutámico/farmacología , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Ratones , Ratones Noqueados , Modelos Animales , Neuroglía/efectos de los fármacos , Presión Osmótica/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y1/deficiencia , Transducción de Señal/efectos de los fármacos , Factores de Crecimiento Endotelial Vascular/farmacología , Xantinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...