Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38398760

RESUMEN

The cultivation of cyanobacteria by exploiting available in situ resources represents a possible way to supply food and oxygen to astronauts during long-term crewed missions on Mars. Here, we evaluated the possibility of cultivating the extremophile cyanobacterium Chroococcidiopsis thermalis CCALA 050 under operating conditions that should occur within a dome hosting a recently patented process to produce nutrients and oxygen on Mars. The medium adopted to cultivate this cyanobacterium, named Martian medium, was obtained using a mixture of regolith leachate and astronauts' urine simulants that would be available in situ resources whose exploitation could reduce the mission payload. The results demonstrated that C. thermalis can grow in such a medium. For producing high biomass, the best medium consisted of specific percentages (40%vol) of Martian medium and a standard medium (60%vol). Biomass produced in such a medium exhibits excellent antioxidant properties and contains significant amounts of pigments. Lipidomic analysis demonstrated that biomass contains strategic lipid classes able to help the astronauts facing the oxidative stress and inflammatory phenomena taking place on Mars. These characteristics suggest that this strain could serve as a valuable nutritional resource for astronauts.

2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175460

RESUMEN

Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. Wharton's jelly is a tissue in the umbilical cord that contains mesenchymal stromal cells (MSCs) with a high plasticity and differentiation potential. Their regeneration capability is compromised by cell damage and aging. The main cause of cell damage is oxidative stress coming from an imbalance between oxidant and antioxidant species. Microgravity represents a stressing condition able to induce ROS production, ultimately leading to different subcellular compartment damages. Here, we analyzed molecular programs of stemness (Oct-4; SOX2; Nanog), cell senescence, p19, p21 (WAF1/CIP1), p53, and stress response in WJ-MSCs exposed to microgravity. From our results, we can infer that a simulated microgravity environment is able to influence WJ-MSC behavior by modulating the expression of stress and stemness-related genes, cell proliferation regulators, and both proapoptotic and antiapoptotic genes. Our results suggest a cellular adaptation addressed to survival occurring during the first hours of simulated microgravity, followed by a loss of stemness and proliferation capability, probably related to the appearance of a molecular program of senescence.


Asunto(s)
Células Madre Mesenquimatosas , Ingravidez , Gelatina de Wharton , Diferenciación Celular , Senescencia Celular , Cordón Umbilical , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular , Células Cultivadas
3.
Hemasphere ; 7(3): e848, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36874380

RESUMEN

Drug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression. Here, we show that imatinib, an oral tyrosine kinase inhibitor developed for the treatment of chronic myelogenous leukemia, acts as multimodal therapy targeting signal transduction pathways involved in the pathogenesis of both anemia and inflammatory vasculopathy of humanized murine model for SCD. In addition, imatinib inhibits the platelet-derived growth factor-B-dependent pathway, interfering with the profibrotic response to hypoxia/reperfusion injury, used to mimic acute VOCs. Our data indicate that imatinib might be considered as possible new therapeutic tool for chronic treatment of SCD.

4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901810

RESUMEN

Lipidomics and metabolomics are nowadays widely used to provide promising insights into the pathophysiology of cellular stress disorders. Our study expands, with the use of a hyphenated ion mobility mass spectrometric platform, the understanding of the cellular processes and stress due to microgravity. By lipid profiling of human erythrocytes, we annotated complex lipids such as oxidized phosphocholines, phosphocholines bearing arachidonic in their moiety, as well as sphingomyelins and hexosyl ceramides associated with microgravity conditions. Overall, our findings give an insight into the molecular alterations and identify erythrocyte lipidomics signatures associated with microgravity conditions. If the present results are confirmed in future studies, they may help to develop suitable treatments for astronauts after return to Earth.


Asunto(s)
Lipidómica , Ingravidez , Humanos , Lipidómica/métodos , Metabolómica , Esfingomielinas , Eritrocitos
5.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499118

RESUMEN

Alzheimer's disease (AD) is characterized by an initial accumulation of amyloid plaques and neurofibrillary tangles, along with the depletion of cholinergic markers. The currently available therapies for AD do not present any disease-modifying effects, with the available in vitro platforms to study either AD drug candidates or basic biology not fully recapitulating the main features of the disease or being extremely costly, such as iPSC-derived neurons. In the present work, we developed and validated a novel cell-based AD model featuring Tau hyperphosphorylation and degenerative neuronal morphology. Using the model, we evaluated the efficacy of three different groups of newly synthesized acetylcholinesterase (AChE) inhibitors, along with a new dual acetylcholinesterase/glycogen synthase kinase 3 inhibitor, as potential AD treatment on differentiated SH-SY5Y cells treated with glyceraldehyde to induce Tau hyperphosphorylation, and subsequently neurite degeneration and cell death. Testing of such compounds on the newly developed model revealed an overall improvement of the induced defects by inhibition of AChE alone, showing a reduction of S396 aberrant phosphorylation along with a moderate amelioration of the neuron-like morphology. Finally, simultaneous AChE/GSK3 inhibition further enhanced the limited effects observed by AChE inhibition alone, resulting in an improvement of all the key parameters, such as cell viability, morphology, and Tau abnormal phosphorylation.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/farmacología , Proteínas tau/metabolismo , Acetilcolinesterasa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Fosforilación
6.
PLoS One ; 17(9): e0274753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112659

RESUMEN

Nowadays, fungal infections increase, and the demand of novel antifungal agents is constantly rising. In the present study, silver, titanium dioxide, cobalt (II) hydroxide and cobalt (II,III) oxide nanomaterials have been synthesized from Spirulina platensis extract. The synthesis mechanism has been studied using GCMS and FTIR thus confirming the involvement of secondary metabolites, mainly amines. The obtained products have been analysed using XRD, SEM, TGA and zeta potential techniques. The findings revealed average crystallite size of 15.22 nm with 9.72 nm for oval-shaped silver nanoparticles increasing to 26.01 nm and 24.86 nm after calcination and 4.81 nm for spherical-shaped titanium dioxide nanoparticles which decreased to 4.62 nm after calcination. Nanoflake shape has been observed for cobalt hydroxide nanomaterials and for cobalt (II, III) oxide with crystallite size of 3.52 nm and 13.28 nm, respectively. Silver nanoparticles showed the best thermal and water dispersion stability of all the prepared structures. Once subjected to three different Candida species (C. albicans, C. glabrata, and C. krusei) silver nanoparticles and cobalt (II) hydroxide nanomaterials showed strong antifungal activity at 50 µg/mL with minimum inhibitory concentration (MIC) values. After light exposition, MIC values for nanomaterials decreased (to 12.5 µg/mL) for C. krusei and increased (100 µg/mL) for C. albicans and C. glabrata.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Aminas , Antifúngicos/química , Antifúngicos/farmacología , Candida albicans , Candida glabrata , Cobalto , Nanopartículas del Metal/química , Óxidos , Extractos Vegetales/farmacología , Plata/química , Spirulina , Titanio , Agua
7.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743319

RESUMEN

Erythrocytes are highly specialized cells in human body, and their main function is to ensure the gas exchanges, O2 and CO2, within the body. The exposure to microgravity environment leads to several health risks such as those affecting red blood cells. In this work, we investigated the changes that occur in the structure and function of red blood cells under simulated microgravity, compared to terrestrial conditions, at different time points using biochemical and biophysical techniques. Erythrocytes exposed to simulated microgravity showed morphological changes, a constant increase in reactive oxygen species (ROS), a significant reduction in total antioxidant capacity (TAC), a remarkable and constant decrease in total glutathione (GSH) concentration, and an augmentation in malondialdehyde (MDA) at increasing times. Moreover, experiments were performed to evaluate the lipid profile of erythrocyte membranes which showed an upregulation in the following membrane phosphocholines (PC): PC16:0_16:0, PC 33:5, PC18:2_18:2, PC 15:1_20:4 and SM d42:1. Thus, remarkable changes in erythrocyte cytoskeletal architecture and membrane stiffness due to oxidative damage have been found under microgravity conditions, in addition to factors that contribute to the plasticity of the red blood cells (RBCs) including shape, size, cell viscosity and membrane rigidity. This study represents our first investigation into the effects of microgravity on erythrocytes and will be followed by other experiments towards understanding the behaviour of different human cell types in microgravity.


Asunto(s)
Ingravidez , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Glutatión/metabolismo , Humanos , Malondialdehído/metabolismo , Estrés Oxidativo
8.
Mar Drugs ; 20(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35621951

RESUMEN

Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.


Asunto(s)
Vuelo Espacial , Spirulina , Astronautas , Humanos
9.
Membranes (Basel) ; 12(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35207126

RESUMEN

Chronic low-grade vascular inflammation and endothelial dysfunction significantly contribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed flow and laminar flow with low magnitude is pro-inflammatory. Endothelial mechanosensors are the key upstream signaling proteins in SS-induced pro- and anti-inflammatory responses. Being transmembrane proteins, mechanosensors, not only experience fluid SS but also become regulated by the biomechanical properties of the lipid bilayer and the cytoskeleton. We review the apparent effects of pro-inflammatory factors (hypoxia, oxidative stress, hypercholesterolemia, and cytokines) on the biomechanics of the lipid bilayer and the cytoskeleton. An analysis of the available data suggests that the formation of a vicious circle may occur, in which pro-inflammatory cytokines enhance and attenuate SS-induced pro-inflammatory and anti-inflammatory signaling, respectively.

10.
Medicines (Basel) ; 9(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35200752

RESUMEN

Artemisinin-based Combination Therapies (ACTs) are currently the frontline treatment against Plasmodium falciparum malaria, but parasite resistance to artemisinin (ART) and its derivatives, core components of ACTs, is spreading in the Mekong countries. In this study, we report the synthesis of several novel artemisinin derivatives and evaluate their in vitro and in silico capacity to counteract Plasmodium falciparum artemisinin resistance. Furthermore, recognizing that the malaria parasite devotes considerable resources to minimizing the oxidative stress that it creates during its rapid consumption of hemoglobin and the release of heme, we sought to explore whether further augmentation of this oxidative toxicity might constitute an important addition to artemisinins. The present report demonstrates, in vitro, that FM-AZ, a newly synthesized artemisinin derivative, has a lower IC50 than artemisinin in P. falciparum and a rapid action in killing the parasites. The docking studies for important parasite protein targets, PfATP6 and PfHDP, complemented the in vitro results, explaining the superior IC50 values of FM-AZ in comparison with ART obtained for the ART-resistant strain. However, cross-resistance between FM-AZ and artemisinins was evidenced in vitro.

11.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436509

RESUMEN

To egress from its erythrocyte host, the malaria parasite, Plasmodium falciparum, must destabilize the erythrocyte membrane by activating an erythrocyte tyrosine kinase. Because imatinib inhibits erythrocyte tyrosine kinases and because imatinib has a good safety profile, we elected to determine whether coadministration of imatinib with standard of care (SOC) might be both well tolerated and therapeutically efficacious in malaria patients. Patients with uncomplicated P. falciparum malaria from a region in Vietnam where one third of patients experience delayed parasite clearance (DPC; continued parasitemia after 3 d of therapy) were treated for 3 d with either the region's SOC (40 mg dihydroartemisinin + 320 mg piperaquine/d) or imatinib (400 mg/d) + SOC. Imatinib + SOC-treated participants exhibited no increase in number or severity of adverse events, a significantly accelerated decline in parasite density and pyrexia, and no DPC. Surprisingly, these improvements were most pronounced in patients with the highest parasite density, where serious complications and death are most frequent. Imatinib therefore appears to improve SOC therapy, with no obvious drug-related toxicities.


Asunto(s)
Antimaláricos/efectos adversos , Antimaláricos/uso terapéutico , Mesilato de Imatinib/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Adolescente , Adulto , Artemisininas/uso terapéutico , Quimioterapia Combinada , Fiebre/tratamiento farmacológico , Fiebre/microbiología , Humanos , Mesilato de Imatinib/efectos adversos , Malaria Falciparum/parasitología , Persona de Mediana Edad , Quinolinas/uso terapéutico , Resultado del Tratamiento , Vietnam , Adulto Joven
12.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360739

RESUMEN

Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Tamaño de la Célula , Miosina Tipo II/metabolismo , Transducción de Señal , Actomiosina/metabolismo , Animales , Humanos , Presión Hidrostática
13.
Antioxidants (Basel) ; 10(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205032

RESUMEN

Endothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive production of ROS, however, results in oxidative stress, a significant contributor to the development of numerous diseases. Here, we analyze the experimental data and theoretical concepts concerning positive pro-survival effects of ROS on signaling pathways in endothelial cells (ECs). Our analysis of the available experimental data suggests possible positive roles of ROS in induction of pro-survival pathways, downstream of the Gi-protein-coupled receptors, which mimics insulin signaling and prevention or improvement of the endothelial dysfunction. It is, however, doubtful, whether ROS can contribute to the stabilization of the endothelial barrier.

14.
PLoS One ; 15(11): e0242372, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33180822

RESUMEN

Although current malaria therapies inhibit pathways encoded in the parasite's genome, we have looked for anti-malaria drugs that can target an erythrocyte component because development of drug resistance might be suppressed if the parasite cannot mutate the drug's target. In search for such erythrocyte targets, we noted that human erythrocytes express tyrosine kinases, whereas the Plasmodium falciparum genome encodes no obvious tyrosine kinases. We therefore screened a library of tyrosine kinase inhibitors from Eli Lilly and Co. in a search for inhibitors with possible antimalarial activity. We report that although most tyrosine kinase inhibitors exerted no effect on parasite survival, a subset of tyrosine kinase inhibitors displayed potent anti-malarial activity. Moreover, all inhibitors found to block tyrosine phosphorylation of band 3 specifically suppressed P. falciparum survival at the parasite egress stage of its intra-erythrocyte life cycle. Conversely, tyrosine kinase inhibitors that failed to block band 3 tyrosine phosphorylation but still terminated the parasitemia were observed to halt parasite proliferation at other stages of the parasite's life cycle. Taken together these results suggest that certain erythrocyte tyrosine kinases may be important to P. falciparum maturation and that inhibitors that block these kinases may contribute to novel therapies for P. falciparum malaria.


Asunto(s)
Malaria Falciparum/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinasa Syk/antagonistas & inhibidores , Animales , Antimaláricos/uso terapéutico , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Femenino , Voluntarios Sanos , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/parasitología , Masculino , Parasitemia/tratamiento farmacológico , Parásitos/metabolismo , Biblioteca de Péptidos , Fosforilación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/parasitología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Quinasa Syk/metabolismo
15.
PLoS One ; 15(9): e0238532, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32870934

RESUMEN

Malaria represents one of the most common infectious diseases which becoming an impellent public health problem worldwide. Antimalarial classical medications include quinine-based drugs, like chloroquine, and artesunate, a derivative of artemisinin, a molecule found in the plant Artemisia annua. Such therapeutics are very effective but show heavy side effects like drug resistance. In this study, "green" silver nanoparticles (AgNPs) have been prepared from two Artemisia species (A. abrotanum and A. arborescens), traditionally used in folk medicine as a remedy for different conditions, and their potential antimalarial efficacy have been assessed. AgNPs have been characterized by UV-Vis, dynamic light scattering and zeta potential, FTIR, XRD, TEM and EDX. The structural characterization has demonstrated the spheroidal shape of nanoparticles and dimensions under 50 nm, useful for biomedical studies. Zeta potential analysis have shown the stability and dispersion of green AgNPs in aqueous medium without aggregation. AgNPs hemocompatibility and antimalarial activity have been studied in Plasmodium falciparum cultures in in vitro experiments. The antiplasmodial effect has been assessed using increasing doses of AgNPs (0.6 to 7.5 µg/mL) on parasitized red blood cells (pRBCs). Obtained data showed that the hemocompatibility of AgNPs is related to their synthetic route and depends on the administered dose. A. abrotanum-AgNPs (1) have shown the lowest percentage of hemolytic activity on pRBCs, underlining their hemocompatibility. These results are in accordance with the lower levels of parasitemia observed after A. abrotanum-AgNPs (1) treatment respect to A. arborescens-AgNPs (2), and AgNPs (3) derived from a classical chemical synthesis. Moreover, after 24 and 48 hours of A. abrotanum-AgNPs (1) treatment, the parasite growth was locked in the ring stage, evidencing the effect of these nanoparticles to hinder the maturation of P. falciparum. The anti-malarial activity of A. abrotanum-AgNPs (1) on pRBCs was demonstrated to be higher than that of A. arborescens-AgNPs (2).


Asunto(s)
Antimaláricos/farmacología , Artemisia , Nanopartículas del Metal , Plasmodium falciparum/efectos de los fármacos , Plata/farmacología , Antimaláricos/química , Artemisia/química , Tecnología Química Verde , Humanos , Malaria Falciparum/tratamiento farmacológico , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Plata/química
16.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977621

RESUMEN

Resistance to antimalarial drugs has spread rapidly over the past few decades. The WHO recommends artemisinin-based combination therapies for the treatment of uncomplicated malaria, but unfortunately these approaches are losing their efficacy in large areas of Southeast Asia. In 2016, artemisinin resistance was confirmed in 5 countries of the Greater Mekong subregion. We focused our study on Syk inhibitors as antimalarial drugs. The Syk protein is present in human erythrocytes, and the membrane of protein band 3 is its major target following activation by oxidant stress. Tyr phosphorylation of band 3 occurs during P. falciparum growth, leading to the release of microparticles containing hemicromes and structural weakening of the host cell membrane, simplifying merozoite reinfection. Syk inhibitors block these events by interacting with the Syk protein's catalytic site. We performed in vitro proteomics and in silico studies and compared the results. In vitro studies were based on treatment of the parasite's cellular cultures with different concentrations of Syk inhibitors, while proteomics studies were focused on the Tyr phosphorylation of band 3 by Syk protein with the same concentrations of drugs. In silico studies were based on different molecular modeling approaches in order to analyze and optimize the ligand-protein interactions and obtain the highest efficacy in vitro. In the presence of Syk inhibitors, we observed a marked decrease of band 3 Tyr phosphorylation according to the increase of the drug's concentration. Our studies could be useful for the structural optimization of these compounds and for the design of novel Syk inhibitors in the future.


Asunto(s)
Antimaláricos , Eritrocitos , Malaria Falciparum , Plasmodium falciparum/crecimiento & desarrollo , Inhibidores de Proteínas Quinasas , Quinasa Syk , Antimaláricos/química , Antimaláricos/farmacología , Relación Dosis-Respuesta a Droga , Eritrocitos/enzimología , Eritrocitos/parasitología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinasa Syk/antagonistas & inhibidores , Quinasa Syk/química , Quinasa Syk/metabolismo
17.
Redox Biol ; 36: 101639, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32863204

RESUMEN

Fyn is a tyrosine kinase belonging to the Src family (Src-Family-Kinase, SFK), ubiquitously expressed. Previously, we report that Fyn is important in stress erythropoiesis. Here, we show that in red cells Fyn specifically stimulates G6PD activity, resulting in a 3-fold increase enzyme catalytic activity (kcat) by phosphorylating tyrosine (Tyr)-401. We found Tyr-401 on G6PD as functional target of Fyn in normal human red blood cells (RBC), being undetectable in G6PD deficient RBCs (G6PD-Mediterranean and G6PD-Genova). Indeed, Tyr-401 is located to a region of the G6PD molecule critical for the formation of the enzymatically active dimer. Amino acid replacements in this region are mostly associated with a chronic hemolysis phenotype. Using mutagenesis approach, we demonstrated that the phosphorylation status of Tyr401 modulates the interaction of G6PD with G6P and stabilizes G6PD in a catalytically more efficient conformation. RBCs from Fyn-/-mice are defective in G6PD activity, resulting in increased susceptibility to primaquine-induced intravascular hemolysis. This negatively affected the recycling of reduced Prx2 in response to oxidative stress, indicating that defective G6PD phosphorylation impairs defense against oxidation. In human RBCs, we confirm the involvement of the thioredoxin/Prx2 system in the increase vulnerability of G6PD deficient RBCs to oxidation. In conclusion, our data suggest that Fyn is an oxidative radical sensor, and that Fyn-mediated Tyr-401 phosphorylation, by increasing G6PD activity, plays an important role in the physiology of RBCs. Failure of G6PD activation by this mechanism may be a major limiting factor in the ability of G6PD deficient RBCs to withstand oxidative stress.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Glucosafosfato Deshidrogenasa , Animales , Eritrocitos , Glucosa-6-Fosfato , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Hemólisis , Ratones , Proteínas Proto-Oncogénicas c-fyn
18.
Antioxidants (Basel) ; 9(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32824055

RESUMEN

Although artemisinin-based combination therapies (ACTs) treat Plasmodium falciparum malaria effectively throughout most of the world, the recent expansion of ACT-resistant strains in some countries of the Greater Mekong Subregion (GMS) further increased the interest in improving the effectiveness of treatment and counteracting resistance. Recognizing that (1) partially denatured hemoglobin containing reactive iron (hemichromes) is generated in parasitized red blood cells (pRBC) by oxidative stress, (2) redox-active hemichromes have the potential to enhance oxidative stress triggered by the parasite and the activation of artemisinin to its pharmaceutically active form, and (3) Syk kinase inhibitors block the release of membrane microparticles containing hemichromes, we hypothesized that increasing hemichrome content in parasitized erythrocytes through the inhibition of Syk kinase might trigger a virtuous cycle involving the activation of artemisinin, the enhancement of oxidative stress elicited by activated artemisinin, and a further increase in hemichrome production. We demonstrate here that artemisinin indeed augments oxidative stress within parasitized RBCs and that Syk kinase inhibitors further increase iron-dependent oxidative stress, synergizing with artemisinin in killing the parasite. We then demonstrate that Syk kinase inhibitors achieve this oxidative enhancement by preventing parasite-induced release of erythrocyte-derived microparticles containing redox-active hemichromes. We also observe that Syk kinase inhibitors do not promote oxidative toxicity to healthy RBCs as they do not produce appreciable amounts of hemichromes. Since some Syk kinase inhibitors can be taken daily with minimal side effects, we propose that Syk kinase inhibitors could evidently contribute to the potentiation of ACTs.

19.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32646002

RESUMEN

In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin redox activation because it is expected to contain reactive iron and it has been described to release free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.


Asunto(s)
Artemisininas/uso terapéutico , Eritrocitos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Deferoxamina/uso terapéutico , Eritrocitos/metabolismo , Femenino , Hemo/metabolismo , Hemoglobinas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Masculino , Metahemoglobina/metabolismo , Persona de Mediana Edad , Oxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxihemoglobinas/metabolismo , Superóxidos/metabolismo
20.
Cell Mol Bioeng ; 13(3): 201-218, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32426058

RESUMEN

INTRODUCTION: The nature of the surface is critical in determining the biological activity of silica powders. A novel correlation between toxicity and surface properties of bioactive glass ceramics (BGCs) synthesized via the sol-gel method was attempted in this study. METHODS: The behavior of BGCs after their attachment to the surface of red blood cells (RBCs) was evaluated and their toxic effects were determined based on hemolysis, membrane injury via anti-phosphotyrosine immunoblot of Band 3, lipid peroxidation, potential to generate reactive oxygen species, and antioxidant enzyme production. In particular, three BGCs were synthesized and treated at three sintering temperatures (T1 = 835 °C, T2 = 1000 °C and T3 = 1100 °C) to investigate possible relation between surface charge or structure and hemolytic potential. RESULTS: Their toxicity based on hemolysis was dose dependent, while BGC-T2 had the best hemocompatibility in compare with the other BGCs.No BGCs in dosages lower than 0.125 mg/mL could damage erythrocytes. On the other hand, all BGCs promoted the production of reactive oxygen species in certain concentrations, with the BGC-T2 producing the lowest ROS and increasing the glutathione levels in RBCs protecting their damage. CONCLUSIONS: The results suggest that various factors such as size, a probable different proportion of surface silanols, a balanced mechanism between calcium and magnesium cellular uptake or the different crystalline nature may have contributed to this finding; however, future research is needed to clarify the underlying mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA