Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559194

RESUMEN

In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.

2.
Nat Commun ; 15(1): 1272, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341412

RESUMEN

Cis-genetic effects are key determinants of transcriptional divergence in discrete tissues and cell types. However, how cis- and trans-effects act across continuous trajectories of cellular differentiation in vivo is poorly understood. Here, we quantify allele-specific expression during spermatogenic differentiation at single-cell resolution in an F1 hybrid mouse system, allowing for the comprehensive characterisation of cis- and trans-genetic effects, including their dynamics across cellular differentiation. Collectively, almost half of the genes subject to genetic regulation show evidence for dynamic cis-effects that vary during differentiation. Our system also allows us to robustly identify dynamic trans-effects, which are less pervasive than cis-effects. In aggregate, genetic effects were strongest in round spermatids, which parallels their increased transcriptional divergence we identified between species. Our approach provides a comprehensive quantification of the variability of genetic effects in vivo, and demonstrates a widely applicable strategy to dissect the impact of regulatory variants on gene regulation in dynamic systems.


Asunto(s)
Regulación de la Expresión Génica , Espermátides , Masculino , Animales , Ratones
3.
Cell ; 187(4): 981-998.e25, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325365

RESUMEN

The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recurrent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and spatial transcriptomics, we systematically characterized morphological and gene expression changes occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during decidualization, and into aging. These analyses reveal that fibroblasts play central-and highly organ-specific-roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our results suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unexpected cost of the recurrent remodeling required for reproduction.


Asunto(s)
Envejecimiento , Genitales Femeninos , Animales , Femenino , Ratones , Embarazo , Genitales Femeninos/citología , Genitales Femeninos/metabolismo , Inflamación/metabolismo , Útero/citología , Vagina/citología , Análisis de la Célula Individual
4.
Nat Commun ; 12(1): 608, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504783

RESUMEN

Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana/metabolismo , Netrina-1/metabolismo , Nicho de Células Madre , Animales , Arteriolas/metabolismo , Diferenciación Celular , Proliferación Celular , Senescencia Celular , Eliminación de Gen , Trasplante de Células Madre Hematopoyéticas , Ratones Mutantes , Ratones Transgénicos , Transducción de Señal
5.
Oncoimmunology ; 9(1): 1727116, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117594

RESUMEN

Eosinophils have been identified as a prognostic marker in immunotherapy of melanoma and suggested to contribute to anti-tumor host defense. However, the influence of immune checkpoint inhibitors (ICI) on the eosinophil population is poorly studied. Here, we applied routine laboratory tests, multicolor flow cytometry, RNA microarray analysis, and bio-plex assay to analyze circulating eosinophils and related serum inflammatory factors in 32 patients treated with pembrolizumab or the combination of nivolumab and ipilimumab. We demonstrated that clinical responses to ICI treatment were associated with an eosinophil accumulation in the peripheral blood. Moreover, immunotherapy led to the alteration of the eosinophil genetic and activation profile. Elevated serum concentrations of IL-16 during ICI treatment were found to be associated with increased frequencies of eosinophils in the peripheral blood. Using immunohistochemistry, we observed an enhanced eosinophil degranulation and a positive correlation between eosinophil and CD8+ T cell infiltration of tumor tissues from melanoma patients treated with ICI. Our findings highlight additional mechanisms of ICI effects and suggest the level of eosinophils as a novel predictive marker for melanoma patients who may benefit from this immunotherapy.


Asunto(s)
Eosinófilos , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico , Ipilimumab/uso terapéutico , Melanoma/tratamiento farmacológico , Nivolumab/uso terapéutico
6.
Cell Stem Cell ; 24(1): 166-182.e13, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30581079

RESUMEN

We report the direct reprogramming of both adult human fibroblasts and blood cells into induced neural plate border stem cells (iNBSCs) by ectopic expression of four neural transcription factors. Self-renewing, clonal iNBSCs can be robustly expanded in defined media while retaining multilineage differentiation potential. They generate functional cell types of neural crest and CNS lineages and could be used to model a human pain syndrome via gene editing of SCN9A in iNBSCs. NBSCs can also be derived from human pluripotent stem cells and share functional and molecular features with NBSCs isolated from embryonic day 8.5 (E8.5) mouse neural folds. Single-cell RNA sequencing identified the anterior hindbrain as the origin of mouse NBSCs, with human iNBSCs sharing a similar regional identity. In summary, we identify embryonic NBSCs and report their generation by direct reprogramming in human, which may facilitate insights into neural development and provide a neural stem cell source for applications in regenerative medicine.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Embrionarias/citología , Placa Neural/citología , Células-Madre Neurales/citología , Células Madre Pluripotentes/citología , Adulto , Animales , Células Sanguíneas , Células Cultivadas , Células Madre Embrionarias/metabolismo , Humanos , Masculino , Ratones , Placa Neural/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Células Madre Pluripotentes/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA