Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMB Rep ; 54(9): 476-481, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34488925

RESUMEN

Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in ß-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphatidylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed -1620/-1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immunoprecipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting. [BMB Reports 2021; 54(9): 476-481].


Asunto(s)
Hígado/metabolismo , Perilipina-5/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Triglicéridos/metabolismo , Animales , Sitios de Unión , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Masculino , Ratones , Ratones Noqueados , Perilipina-5/química , Perilipina-5/genética , Regiones Promotoras Genéticas , Unión Proteica , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética
2.
Biomedicines ; 10(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35052752

RESUMEN

Type 2 diabetes mellitus (T2DM) is a major global health issue. The development of T2DM is gradual and preceded by the pre-diabetes mellitus (pre-DM) stage, which often remains undiagnosed. This study aimed to identify novel pre-DM biomarkers in a high-fat diet (HFD)-induced pre-DM mouse model. Male C57BL/6J mice were fed either a chow diet or HFD for 12 weeks. Serum and liver samples were isolated in a time-dependent manner. Semi-quantitative assessment of secretory cytokines was performed by cytokine array analysis, and 13 cytokines were selected for further analysis based on the changes in expression levels in the pre-DM and T2DM stages. HFD-fed mice gained body weight and exhibited high serum lipid, liver enzyme, glucose, and insulin levels during the progression of pre-DM to T2DM. The mRNA expression of inflammatory and lipogenic genes was elevated in HFD-fed mice The mRNA expression of Fc receptor, IgG, low affinity Iib, lectin, galactose binding, soluble 1, vascular cell adhesion molecule 1, insulin-like growth factor binding protein 5, and growth arrest specific 6 was elevated in the pre-DM, which was confirmed by measuring protein levels. Our study identified novel pre-DM biomarkers that may help to delay or prevent the progression of T2DM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...