Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 215(3): 108006, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507029

RESUMEN

Eukaryotic initiation factor 2 (eIF2) plays a key role in protein synthesis and in its regulation. The assembly of this heterotrimeric factor is facilitated by Cdc123, a member of the ATP grasp family that binds the γ subunit of eIF2. Notably, some mutations related to MEHMO syndrome, an X-linked intellectual disability, affect Cdc123-mediated eIF2 assembly. The mechanism of action of Cdc123 is unclear and structural information for the human protein is awaited. Here, the crystallographic structure of human Cdc123 (Hs-Cdc123) bound to domain 3 of human eIF2γ (Hs-eIF2γD3) was determined. The structure shows that the domain 3 of eIF2γ is bound to domain 1 of Cdc123. In addition, the long C-terminal region of Hs-Cdc123 provides a link between the ATP and Hs-eIF2γD3 binding sites. A thermal shift assay shows that ATP is tightly bound to Cdc123 whereas the affinity of ADP is much smaller. Yeast cell viability experiments, western blot analysis and two-hybrid assays show that ATP is important for the function of Hs-Cdc123 in eIF2 assembly. These data and recent findings allow us to propose a refined model to explain the mechanism of action of Cdc123 in eIF2 assembly.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Proteínas de Saccharomyces cerevisiae , Humanos , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
2.
RNA ; 23(5): 673-682, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28143889

RESUMEN

Translation initiation in eukaryotes and archaea involves a methionylated initiator tRNA delivered to the ribosome in a ternary complex with e/aIF2 and GTP. Eukaryotic and archaeal initiator tRNAs contain a highly conserved A1-U72 base pair at the top of the acceptor stem. The importance of this base pair to discriminate initiator tRNAs from elongator tRNAs has been established previously using genetics and biochemistry. However, no structural data illustrating how the A1-U72 base pair participates in the accurate selection of the initiator tRNAs by the translation initiation systems are available. Here, we describe the crystal structure of a mutant E. coli initiator tRNAfMetA1-U72, aminoacylated with methionine, in which the C1:A72 mismatch at the end of the tRNA acceptor stem has been changed to an A1-U72 base pair. Sequence alignments show that the mutant E. coli tRNA is a good mimic of archaeal initiator tRNAs. The crystal structure, determined at 2.8 Å resolution, shows that the A1-U72 pair adopts an unusual arrangement. A1 is in a syn conformation and forms a single H-bond interaction with U72 This interaction requires protonation of the N1 atom of A1 Moreover, the 5' phosphoryl group folds back into the major groove of the acceptor stem and interacts with the N7 atom of G2 A possible role of this unusual geometry of the A1-U72 pair in the recognition of the initiator tRNA by its partners during eukaryotic and archaeal translation initiation is discussed.


Asunto(s)
Escherichia coli/genética , ARN de Transferencia de Metionina/química , Anticodón , Emparejamiento Base , Escherichia coli/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , ARN de Archaea/química , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN de Transferencia de Metionina/metabolismo
3.
Structure ; 23(9): 1596-1608, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26211610

RESUMEN

Eukaryotic initiation factor 2 (eIF2), a heterotrimeric guanosine triphosphatase, has a central role in protein biosynthesis by supplying methionylated initiator tRNA to the ribosomal translation initiation complex and by serving as a target for translational control in response to stress. Recent work identified a novel step indispensable for eIF2 function: assembly of eIF2 from its three subunits by the cell proliferation protein Cdc123. We report the first crystal structure of a Cdc123 representative, that from Schizosaccharomyces pombe, both isolated and bound to domain III of Saccharomyces cerevisiae eIF2γ. The structures show that Cdc123 resembles enzymes of the ATP-grasp family. Indeed, Cdc123 binds ATP-Mg(2+), and conserved residues contacting ATP-Mg(2+) are essential for Cdc123 to support eIF2 assembly and cell viability. A docking of eIF2αγ onto Cdc123, combined with genetic and biochemical experiments, allows us to propose a model explaining how Cdc123 participates in the biogenesis of eIF2 through facilitating assembly of eIF2γ to eIF2α.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/química , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Factor 2 Eucariótico de Iniciación/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Nucleic Acids Res ; 41(2): 1047-57, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193270

RESUMEN

Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the ß subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with ß having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and ß subunits to archaeal γ subunit. We show that the ß subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2-GDPNP-tRNA complex.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Subunidades de Proteína/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Secuencia de Bases , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN de Transferencia de Metionina/química , Proteínas de Saccharomyces cerevisiae/química , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Difracción de Rayos X
5.
Nat Struct Mol Biol ; 19(4): 450-4, 2012 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22447243

RESUMEN

Eukaryotic and archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that has a crucial role in the selection of the correct start codon on messenger RNA. We report the 5-Å resolution crystal structure of the ternary complex formed by archaeal aIF2 from Sulfolobus solfataricus, the GTP analog GDPNP and methionylated initiator tRNA. The 3D model is further supported by solution studies using small-angle X-ray scattering. The tRNA is bound by the α and γ subunits of aIF2. Contacts involve the elbow of the tRNA and the minor groove of the acceptor stem, but not the T-stem minor groove. We conclude that despite considerable structural homology between the core γ subunit of aIF2 and the elongation factor EF1A, these two G proteins of the translation apparatus use very different tRNA-binding strategies.


Asunto(s)
Proteínas Arqueales/química , Guanosina Trifosfato/análogos & derivados , Factores de Iniciación de Péptidos/química , ARN de Archaea/química , ARN de Transferencia de Metionina/química , Sulfolobus solfataricus/química , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factores de Iniciación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Archaea/metabolismo , ARN de Transferencia de Metionina/metabolismo , Sulfolobus solfataricus/metabolismo
6.
RNA ; 17(2): 251-62, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21159796

RESUMEN

Aminoglycosides are ribosome-targeting antibiotics and a major drug group of choice in the treatment of serious enterococcal infections. Here we show that aminoglycoside resistance in Enterococcus faecium strain CIP 54-32 is conferred by the chromosomal gene efmM, encoding the E. faecium methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m5C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S rRNA nucleotide at C1404. EfmM uses the methyl group donor S-adenosyl-L-methionine to catalyze formation of m5C1404 on the 30S ribosomal subunit, whereas naked 16S rRNA and the 70S ribosome are not substrates. Addition of the 5-methyl to C1404 sterically hinders aminoglycoside binding. Crystallographic structure determination of EfmM at 2.28 Å resolution reveals an N-terminal domain connected to a central methyltransferase domain that is linked by a flexible lysine-rich region to two C-terminal subdomains. Mutagenesis of the methyltransferase domain established that two cysteines at specific tertiary locations are required for catalysis. The tertiary structure of EfmM is highly similar to that of RsmF, consistent with m5C formation at adjacent sites on the 30S subunit, while distinctive structural features account for the enzymes' respective specificities for nucleotides C1404 and C1407.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/química , Enterococcus faecium/enzimología , Metiltransferasas/química , ARN Ribosómico 16S/química , Secuencia de Aminoácidos , Anticodón/química , Proteínas Bacterianas/metabolismo , Codón/química , Farmacorresistencia Bacteriana , Enterococcus faecium/efectos de los fármacos , Metiltransferasas/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
7.
Biochemistry ; 49(40): 8680-8, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20822097

RESUMEN

A critical consequence of the initiation of translation is the setting of the reading frame for mRNA decoding. In eukaryotic and archaeal cells, heterotrimeric initiation factor e/aIF2, in its GTP form, specifically binds Met-tRNA(i)(Met) throughout the translation initiation process. After start codon recognition, the factor, in its GDP-bound form, loses affinity for Met-tRNA(i)(Met) and eventually dissociates from the initiation complex. The role of each aIF2 subunit in tRNA binding has been extensively studied in archaeal systems. The isolated archaeal γ subunit is able to bind tRNA, but the α subunit is required for strong binding. Until now, difficulties during purification have hampered the study of the role of each of the three subunits of eukaryotic eIF2 in specific binding of the initiator tRNA. Here, we have produced the three subunits of eIF2 from Encephalitozoon cuniculi, isolated or assembled into heterodimers or into the full heterotrimer. Using assays following protection of Met-tRNA(i)(Met) against deacylation, we show that the eukaryotic γ subunit is able to bind by itself the initiator tRNA. However, the two peripheral α and ß subunits are required for strong binding and contribute equally to tRNA binding affinity. The core domains of α and ß probably act indirectly by stabilizing the tRNA binding site on the γ subunit. These results, together with those previously obtained with archaeal aIF2 and yeast eIF2, show species-specific distributions of the roles of the peripheral subunits of e/aIF2 in tRNA binding.


Asunto(s)
Encephalitozoon cuniculi/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Fúngicas/metabolismo , ARN de Hongos/metabolismo , ARN de Transferencia de Metionina/metabolismo , Sitios de Unión , Clonación Molecular , Encephalitozoon cuniculi/química , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/aislamiento & purificación , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Unión Proteica , Multimerización de Proteína , Subunidades de Proteína/metabolismo
8.
J Mol Biol ; 394(5): 843-51, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19837083

RESUMEN

Methionyl-tRNA synthetase (MetRS) specifically binds its methionine substrate in an induced-fit mechanism, with methionine binding causing large rearrangements. Mutated MetRS able to efficiently aminoacylate the methionine (Met) analog azidonorleucine (Anl) have been identified by saturation mutagenesis combined with in vivo screening procedures. Here, the crystal structure of such a mutated MetRS was determined in the apo form as well as complexed with Met or Anl (1.4 to 1.7 A resolution) to reveal the structural basis for the altered specificity. The mutations result in both the loss of important contacts with Met and the creation of new contacts with Anl, thereby explaining the specificity shift. Surprisingly, the conformation induced by Met binding in wild-type MetRS already occurs in the apo form of the mutant enzyme. Therefore, the mutations cause the enzyme to switch from an induced-fit mechanism to a lock-and-key one, thereby enhancing its catalytic efficiency.


Asunto(s)
Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Sustitución de Aminoácidos/genética , Cristalografía por Rayos X , Metionina-ARNt Ligasa/genética , Modelos Moleculares , Proteínas Mutantes/genética , Norleucina/análogos & derivados , Norleucina/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato
9.
J Mol Biol ; 388(3): 570-82, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19303884

RESUMEN

Aminoglycosides are used extensively for the treatment of severe infections due to Gram-negative bacteria. However, certain species have become highly resistant after acquisition of genes for methyltransferases which catalyze post-transcriptional methylation of N7-G1405 in 16 S rRNA of 30 S ribosomal subunits. Inactivation of this enzymatic activity is therefore an important challenge for development of an effective therapy. The present work describes the crystallographic structures of methyltransferases RmtB and ArmA from clinical isolates. Together with biochemical experiments, the 3D structures indicate that the N-terminal domain specific for this family of methyltransferases is required for enzymatic activity. Site-directed mutagenesis has enabled important residues for catalysis and RNA binding to be identified. These high-resolution structures should underpin the design of potential inhibitors of these enzymes, which could be used to restore the activity of aminoglycosides against resistant pathogens.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/metabolismo
10.
Science ; 312(5782): 1950-4, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16809540

RESUMEN

Glutaminyl-transfer RNA (Gln-tRNA(Gln)) in archaea is synthesized in a pretranslational amidation of misacylated Glu-tRNA(Gln) by the heterodimeric Glu-tRNA(Gln) amidotransferase GatDE. Here we report the crystal structure of the Methanothermobacter thermautotrophicus GatDE complexed to tRNA(Gln) at 3.15 angstroms resolution. Biochemical analysis of GatDE and of tRNA(Gln) mutants characterized the catalytic centers for the enzyme's three reactions (glutaminase, kinase, and amidotransferase activity). A 40 angstrom-long channel for ammonia transport connects the active sites in GatD and GatE. tRNA(Gln) recognition by indirect readout based on shape complementarity of the D loop suggests an early anticodon-independent RNA-based mechanism for adding glutamine to the genetic code.


Asunto(s)
Código Genético , Glutamina/metabolismo , Methanobacteriaceae/enzimología , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , ARN de Archaea/química , ARN de Transferencia de Glutamina/química , Acilación , Adenosina Trifosfato/metabolismo , Amoníaco/metabolismo , Anticodón , Sitios de Unión , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Magnesio/metabolismo , Methanobacteriaceae/genética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN de Archaea/metabolismo , ARN de Transferencia de Glutamina/metabolismo
11.
Structure ; 13(10): 1421-33, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16216574

RESUMEN

Besides direct charging of tRNAs by aminoacyl-tRNA synthetases, indirect routes also ensure attachment of some amino acids onto tRNA. Such routes may explain how new amino acids entered into protein synthesis. In archaea and in most bacteria, tRNA(Gln) is first misaminoacylated by glutamyl-tRNA synthetase. Glu-tRNA(Gln) is then matured into Gln-tRNA(Gln) by a tRNA-dependent amidotransferase. We report the structure of a tRNA-dependent amidotransferase-that of GatDE from Pyrococcus abyssi. The 3.0 A resolution crystal structure shows a tetramer with two GatD molecules as the core and two GatE molecules at the periphery. The fold of GatE cannot be related to that of any tRNA binding enzyme. The ammonium donor site on GatD and the tRNA site on GatE are markedly distant. Comparison of GatD and L-asparaginase structures shows how the motion of a beta hairpin region containing a crucial catalytic threonine may control the overall reaction cycle of GatDE.


Asunto(s)
Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Dimerización , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Transferasas de Grupos Nitrogenados/genética , Biosíntesis de Proteínas , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Pyrococcus abyssi/enzimología , ARN de Archaea/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Glutamina/metabolismo , Homología de Secuencia de Aminoácido , Treonina/química , Difracción de Rayos X
12.
Biochemistry ; 42(4): 932-9, 2003 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-12549912

RESUMEN

Initiation of protein synthesis in bacteria, mitochondria, and chloroplasts involves a formylated methionyl-tRNA species. Formylation of this tRNA is catalyzed by a methionyl-tRNA(f)(Met) formyltransferase (formylase). Upon inactivation of the gene encoding formylase, the growth rate of Escherichia coli is severely decreased. This behavior underlines the importance of formylation to give tRNA(Met) an initiator identity. Surprisingly, however, recent data [Li, Y., Holmes, W. B., Appling, D. R., and RajBhandary, U. L. (2000) J. Bacteriol. 182, 2886-2892] showed that the respiratory growth of Saccharomyces cerevisiaewas not sensitive to deprivation of the mitochondrial formylase. In the present study, we report conditions of temperature or of growth medium composition in which inactivation of the formylase gene indeed impairs the growth of a S. cerevisiae haploid strain. Therefore, some selective advantage can eventually be associated to the existence of a formylating activity in the fungal mitochondrion under severe growth conditions. Finally, the specificity toward tRNA of S. cerevisiae mitochondrial formylase was studied using E. coli initiator tRNA and mutants derived from it. Like its bacterial counterpart, this formylase recognizes nucleotidic features in the acceptor stem of mitochondrial initiator tRNA. This behavior markedly distinguishes the mitochondrial formylase of yeast from that of animals. Indeed, it was shown that bovine mitochondrial formylase mainly recognizes the side chain of the esterified methionine plus a purine-pyrimidine base pair in the D-stem of tRNA [Takeuchi, N., Vial, L., Panvert, M., Schmitt, E., Watanabe, K., Mechulam, Y., and Blanquet, S. (2001) J. Biol. Chem. 276, 20064-20068]. Distinct tRNA recognition mechanisms adopted by the formylases of prokaryotic, fungal, or mammalian origins are likely to reflect coevolution of these enzymes with their tRNA substrate. Each mechanism appears well suited to an efficient selection of the substrate within the pool of all tRNAs.


Asunto(s)
Silenciador del Gen , Genes Fúngicos , Transferasas de Hidroximetilo y Formilo/química , Transferasas de Hidroximetilo y Formilo/genética , Mitocondrias/enzimología , ARN de Transferencia de Metionina/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Emparejamiento Base , Secuencia de Bases , Catálisis , Bovinos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ésteres , Vectores Genéticos , Humanos , Mitocondrias/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Consumo de Oxígeno/genética , ARN de Transferencia de Metionina/genética , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...