RESUMEN
MicroRNA s regulate gene expression by binding to the 3'untranslated region (UTR) of the mRNA of their target genes. Identification of microRNA target genes enables the determination of their functional role in the cells. A single microRNA can target multiple genes, all of which have a microRNA binding site in their 3' UTR. Putative target genes can be identified using target prediction software and gene expression analysis of microRNA expressing cells. The validation of the putative target genes is carried out using the luciferase reporter assay and western blot analysis. This chapter describes the protocol for using these techniques for validation of putative microRNA target genes.
Asunto(s)
MicroARNs , Regiones no Traducidas 3' , Western Blotting , Genes Reporteros , Luciferasas/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genéticaRESUMEN
MicroRNA s are small RNA molecules that regulate gene expression by binding to the 3' untranslated region of the mRNA of their target genes. MicroRNA expression is altered in medulloblastoma as compared to the normal brain and this alteration is often associated with the pathogenesis of this tumor. The quantification of microRNA expression is carried out using quantitative/real-time polymerase chain reaction (PCR). In this chapter, we describe the protocol for the quantification of microRNA s in medulloblastoma tissues and cultured cells. This is carried out in three steps: (1) Extraction of total RNA, (2) Stem-loop reverse-transcriptase PCR, and (3) quantitative PCR.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , MicroARNs , Línea Celular , Humanos , Meduloblastoma/genética , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
High-grade gliomas with arginine or valine substitutions of the histone H3.3 glycine-34 residue (H3.3G34R/V) carry a dismal prognosis, and current treatments, including radiotherapy and chemotherapy, are not curative. Because H3.3G34R/V mutations reprogram epigenetic modifications, we undertook a comprehensive epigenetic approach using ChIP sequencing and ChromHMM computational analysis to define therapeutic dependencies in H3.3G34R/V gliomas. Our analyses revealed a convergence of epigenetic alterations, including (i) activating epigenetic modifications on histone H3 lysine (K) residues such as H3K36 trimethylation (H3K36me3), H3K27 acetylation (H3K27ac), and H3K4 trimethylation (H3K4me3); (ii) DNA promoter hypomethylation; and (iii) redistribution of repressive histone H3K27 trimethylation (H3K27me3) to intergenic regions at the leukemia inhibitory factor (LIF) locus to drive increased LIF abundance and secretion by H3.3G34R/V cells. LIF activated signal transducer and activator of transcription 3 (STAT3) signaling in an autocrine/paracrine manner to promote survival of H3.3G34R/V glioma cells. Moreover, immunohistochemistry and single-cell RNA sequencing from H3.3G34R/V patient tumors revealed high STAT3 protein and RNA expression, respectively, in tumor cells with both inter- and intratumor heterogeneity. We targeted STAT3 using a blood-brain barrierpenetrable small-molecule inhibitor, WP1066, currently in clinical trials for adult gliomas. WP1066 treatment resulted in H3.3G34R/V tumor cell toxicity in vitro and tumor suppression in preclinical mouse models established with KNS42 cells, SJ-HGGx42-c cells, or in utero electroporation techniques. Our studies identify the LIF/STAT3 pathway as a key epigenetically driven and druggable vulnerability in H3.3G34R/V gliomas. This finding could inform development of targeted, combination therapies for these lethal brain tumors.
Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigénesis Genética , Glioma/genética , Glicina , Histonas/metabolismo , Humanos , RatonesRESUMEN
Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cyclerelated genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WTexpressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas.
Asunto(s)
Ependimoma , Histonas , Animales , Niño , Ependimoma/genética , Epigénesis Genética , Epigenómica , Histonas/genética , Humanos , Redes y Vías Metabólicas , RatonesRESUMEN
H3K27M diffuse intrinsic pontine gliomas (DIPGs) are fatal and lack treatments. They mainly harbor H3.3K27M mutations resulting in H3K27me3 reduction. Integrated analysis in H3.3K27M cells, tumors, and in vivo imaging in patients showed enhanced glycolysis, glutaminolysis, and tricarboxylic acid cycle metabolism with high alpha-ketoglutarate (α-KG) production. Glucose and/or glutamine-derived α-KG maintained low H3K27me3 in H3.3K27M cells, and inhibition of key enzymes in glycolysis or glutaminolysis increased H3K27me3, altered chromatin accessibility, and prolonged survival in animal models. Previous studies have shown that mutant isocitrate-dehydrogenase (mIDH)1/2 glioma cells convert α-KG to D-2-hydroxyglutarate (D-2HG) to increase H3K27me3. Here, we show that H3K27M and IDH1 mutations are mutually exclusive and experimentally synthetic lethal. Overall, we demonstrate that H3.3K27M and mIDH1 hijack a conserved and critical metabolic pathway in opposing ways to maintain their preferred epigenetic state. Consequently, interruption of this metabolic/epigenetic pathway showed potent efficacy in preclinical models, suggesting key therapeutic targets for much needed treatments.
Asunto(s)
Neoplasias del Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/genética , Epigenómica/métodos , Histonas/genética , Mutación , Animales , Neoplasias del Tronco Encefálico/metabolismo , Línea Celular Tumoral , Glioma Pontino Intrínseco Difuso/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucólisis , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Trasplante HeterólogoRESUMEN
BACKGROUND: Rhabdoid tumors (RTs) arise within (atypical teratoid/rhabdoid tumor [AT/RT]) or outside the brain (extra [e]CNS-RT) and are driven mainly by inactivation of the SWItch/sucrose nonfermentable (SWI/SNF) complex subunit SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1). A pathognomonic hallmark of RTs is heterogeneous multilineage differentiation, including anomalous neuronal differentiation in some eCNS-RTs. Because remodeling of the SWI/SNF complex regulates differentiation, we hypothesized that SWI/SNF Brahma-associated factors (BAF) and polybromo-associated BAF (PBAF) complex heterogeneity are related to both multilineage differentiation and clinical outcome. METHODS: We performed an integrated analysis of SWI/SNF complex alterations in the developing kidney and cerebellum (most common regions of RT origin) in comparison to eCNS-RT (n =â 14) and AT/RT (n =â 25) tumors. RT samples were interrogated using immunohistochemistry, DNA methylation, and gene expression analyses. RESULTS: The SWI/SNF BAF paralogs actin-like protein (ACTL)6A and ACTL6B were expressed in a mutually exclusive manner in the developing cerebellum and kidney. In contrast, a subset of eCNS-RTs lost mutual exclusivity and coexpressed both subunits. These tumors showed aberrant DNA methylation of genes that regulate neuronal and renal development and demonstrated immunohistochemical evidence of neuronal differentiation. In addition, low expression of the PBAF subunit polybromo-1 (PBRM1) identified a group of AT/RTs in younger children with better overall prognosis. PBRM1-low AT/RT and eCNS-RTs showed altered DNA methylation and gene expression in immune-related genes. PBRM1 knockdown resulted in lowering immunosuppressive cytokines, and PBRM1 levels in tumor samples showed an inverse relationship with cluster of differentiation (CD)8 cytotoxic T-cell infiltration. CONCLUSIONS: Heterogeneity in SWI/SNF BAF (ACTL6A/ACTL6B) and PBAF (PBRM1) subunits is related to histogenesis, contributes to the immune microenvironment and prognosis in RTs, and may inform opportunities to develop immunotherapies.
Asunto(s)
Tumor Rabdoide , Actinas , Diferenciación Celular , Niño , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Humanos , Inmunidad , Pronóstico , Tumor Rabdoide/genética , Proteína SMARCB1 , Sacarosa , Microambiente TumoralRESUMEN
Genome-wide expression profiling studies have identified four core molecular subgroups of medulloblastoma: WNT, SHH, Group 3 and Group 4. Molecular markers are necessary for accurate risk stratification in the non-WNT subgroups due to the underlying heterogeneity in genetic alterations and overall survival. MiR-204 expression was evaluated in molecularly classified 260 medulloblastomas from an Indian cohort and in 763 medulloblastomas from the MAGIC cohort, SickKids, Canada. Low expression of miR-204 in the Group 3 / Group 4 tumors identify a highly aggressive subset of tumors having poor overall survival, in the two independent cohorts of medulloblastomas. Downregulation of miR-204 expression correlates with poor survival within the Group 4 as well indicating it as a valuable risk-stratification marker in the subgroup. Restoration of miR-204 expression in multiple medulloblastoma cell lines was found to inhibit their anchorage-independent growth, invasion potential and tumorigenicity. IGF2R was identified as a novel target of miR-204. MiR-204 expression resulted in downregulation of both M6PR and IGF2R that transport lysosomal proteases from the Golgi apparatus to the lysosomes. Consistent with this finding, miR-204 expression resulted in reduction in the levels of the lysosomal proteases in medulloblastoma cells. MiR-204 expression also resulted in inhibition of autophagy that is known to be dependent on the lysosomal degradation pathway and LC3B, a known miR-204 target. Treatment with HDAC inhibitors resulted in upregulation of miR-204 expression in medulloblastoma cells, suggesting therapeutic role for these inhibitors in the treatment of medulloblastomas. In summary, miR-204 is not only a valuable risk stratification marker in the combined cohort of Group 3 / Group 4 medulloblastomas as well as in the Group 4 itself, that has paucity of good prognostication markers, but also has therapeutic potential as indicated by its tumor suppressive effect on medulloblastoma cells.
Asunto(s)
Neoplasias Cerebelosas/metabolismo , Regulación hacia Abajo/fisiología , Regulación Neoplásica de la Expresión Génica , Meduloblastoma/metabolismo , MicroARNs/biosíntesis , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/mortalidad , Estudios de Cohortes , Células HEK293 , Humanos , Meduloblastoma/genética , Meduloblastoma/mortalidad , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , Clasificación del Tumor/métodos , Tasa de Supervivencia/tendencias , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
Posterior fossa ependymomas (EPN_PF) in children comprise two morphologically identical, but biologically distinct tumor entities. Group-A (EPN_PFA) tumors have a poor prognosis and require intensive therapy. In contrast, group-B tumors (EPN_PFB) exhibit excellent prognosis and the current consensus opinion recommends future clinical trials to test the possibility of treatment de-escalation in these patients. Therefore, distinguishing these two tumor subtypes is critical. EPN_PFA and EPN_PFB can be distinguished based on DNA methylation signatures, but these assays are not routinely available. We have previously shown that a subset of poorly prognostic childhood EPN_PF exhibits global reduction in H3K27me3. Therefore, we set out to determine whether a simple immunohistochemical assay for H3K27me3 could be used to segregate EPN_PFA from EPN_PFB tumors. We assembled a cohort of 230 childhood ependymomas and H3K27me3 immunohistochemistry was assessed as positive or negative in a blinded manner. H3K27me3 staining results were compared with DNA methylation-based subgroup information available in 112 samples [EPN_PFA (n = 72) and EPN_PFB tumors (n = 40)]. H3K27me3 staining was globally reduced in EPN_PFA tumors and immunohistochemistry showed 99% sensitivity and 100% specificity in segregating EPN_PFA from EPN_PFB tumors. Moreover, H3K27me3 immunostaining was sufficient to delineate patients with worse prognosis in two independent, non-overlapping cohorts (n = 133 and n = 97). In conclusion, immunohistochemical evaluation of H3K27me3 global reduction is an economic, easily available and readily adaptable method for defining high-risk EPN_PFA from low-risk posterior fossa EPN_PFB tumors to inform prognosis and to enable the design of future clinical trials.
Asunto(s)
Ependimoma/metabolismo , Neoplasias Infratentoriales/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Niño , Preescolar , Supervivencia sin Enfermedad , Ependimoma/mortalidad , Ependimoma/patología , Femenino , Humanos , Lactante , Neoplasias Infratentoriales/mortalidad , Neoplasias Infratentoriales/patología , Masculino , Pronóstico , Sistema de Registros , Tasa de SupervivenciaRESUMEN
Childhood posterior fossa (PF) ependymomas cause substantial morbidity and mortality. These tumors lack recurrent genetic mutations, but a subset of these ependymomas exhibits CpG island (CpGi) hypermethylation [PF group A (PFA)], implicating epigenetic alterations in their pathogenesis. Further, histological grade does not reliably predict prognosis, highlighting the importance of developing more robust prognostic markers. We discovered global H3K27me3 reduction in a subset of these tumors (PF-ve ependymomas) analogous to H3K27M mutant gliomas. PF-ve tumors exhibited many clinical and biological similarities with PFA ependymomas. Genomic H3K27me3 distribution showed an inverse relationship with CpGi methylation, suggesting that CpGi hypermethylation drives low H3K27me3 in PF-ve ependymomas. Despite CpGi hypermethylation and global H3K27me3 reduction, these tumors showed DNA hypomethylation in the rest of the genome and exhibited increased H3K27me3 genomic enrichment at limited genomic loci similar to H3K27M mutant gliomas. Combined integrative analysis of PF-ve ependymomas with H3K27M gliomas uncovered common epigenetic deregulation of select factors that control radial glial biology, and PF radial glia in early human development exhibited reduced H3K27me3. Finally, H3K27me3 immunostaining served as a biomarker of poor prognosis and delineated radiologically invasive tumors, suggesting that reduced H3K27me3 may be a prognostic indicator in PF ependymomas.
Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Metilación de ADN , Ependimoma/diagnóstico , Ependimoma/metabolismo , Histonas/química , Neoplasias Encefálicas/genética , Sistema Nervioso Central/patología , Niño , Islas de CpG , Ependimoma/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Mutación , Pronóstico , Resultado del TratamientoRESUMEN
Medulloblastoma, a common pediatric malignant brain tumor consists of four molecular subgroups viz. WNT, SHH, Group 3 and Group 4. MiR-148a is over-expressed in the WNT subgroup tumors, which have the lowest incidence of metastasis and excellent survival among all medulloblastomas. MiR-148a was expressed either in a transient manner using a synthetic mimic or in a stable doxycycline inducible manner using a lentiviral vector in non-WNT medulloblastoma cell lines. Expression of miR-148a to levels comparable to that in the WNT subgroup tumors was found to inhibit proliferation, clonogenic potential, invasion potential and tumorigenicity of medulloblastoma cells. MiR-148a expression in medulloblastoma cells brought about reduction in the expression of NRP1, a novel miR-148a target. Restoration of NRP1 expression in medulloblastoma cells was found to rescue the reduction in the invasion potential and tumorigenicity brought about by miR-148a expression. NRP1 is known to play role in multiple signaling pathways that promote tumor growth, invasion and metastasis. NRP1 expression in medulloblastomas was found to be associated with poor survival, with little or no expression in majority of the WNT tumors. The tumor suppressive effect of miR-148a expression accompanied by the down-regulation of NRP1 makes miR-148a an attractive therapeutic agent for the treatment of medulloblastomas.
RESUMEN
Medulloblastoma is the most common and a highly malignant pediatric brain tumor located in the cerebellar region of the brain. Medulloblastomas have recently been shown to consist of four distinct molecular subgroups, viz., WNT, SHH, group 3, and group 4. MiR-206, a miRNA first identified as a myomiR due to its enriched expression in skeletal muscle was found to be expressed specifically in the cerebellum, the site of medulloblastoma occurrence. MiR-206 expression was found to be downregulated in medulloblastomas belonging to all the four molecular subgroups as well as in established medulloblastoma cell lines. Further, the expression of murine homolog of miR-206 was also found to be downregulated in SHH subgroup medulloblastomas from the Smo (+/+) transgenic mice and the Ptch1 (+/-) knockout mice. MiR-206 downregulation in all the four medulloblastoma subgroups suggests tumor-suppressive role for miR-206 in medulloblastoma pathogenesis. The effect of miR-206 expression was analyzed in three established medulloblastoma cell lines, viz., Daoy, D425, and D283 belonging to distinct molecular subgroups. Restoration of miR-206 expression to the levels comparable to those in the normal cerebellum, however, was found to be insufficient to inhibit the growth of established medulloblastoma cell lines. OTX2, an oncogenic miR-206 target, overexpressed in all non-SHH medulloblastomas, is known to inhibit myogenic differentiation of medulloblastoma cells. Overexpression of miR-206 was necessary to downregulate OTX2 expression and inhibit growth of medulloblastoma cell lines.