Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
PLoS Pathog ; 19(2): e1011196, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36827451

RESUMEN

The Omicron variant of SARS-CoV-2 is capable of infecting unvaccinated, vaccinated and previously-infected individuals due to its ability to evade neutralization by antibodies. With multiple sub-lineages of Omicron emerging in the last 12 months, there is inadequate information on the quantitative antibody response generated upon natural infection with Omicron variant and whether these antibodies offer cross-protection against other sub-lineages of Omicron variant. In this study, we characterized the growth kinetics of Kappa, Delta and Omicron variants of SARS-CoV-2 in Calu-3 cells. Relatively higher amounts infectious virus titers, cytopathic effect and disruption of epithelial barrier functions was observed with Delta variant whereas infection with Omicron sub-lineages led to a more robust induction of interferon pathway, lower level of virus replication and mild effect on epithelial barrier. The replication kinetics of BA.1, BA.2 and BA.2.75 sub-lineages of the Omicron variant were comparable in cell culture and natural infection in a subset of individuals led to a significant increase in binding and neutralizing antibodies to the Delta variant and all the three sub-lineages of Omicron but the level of neutralizing antibodies were lowest against the BA.2.75 variant. Finally, we show that Cu2+, Zn2+ and Fe2+ salts inhibited in vitro RdRp activity but only Cu2+ and Fe2+ inhibited both the Delta and Omicron variants in cell culture. Thus, our results suggest that high levels of interferons induced upon infection with Omicron variant may counter virus replication and spread. Waning neutralizing antibody titers rendered subjects susceptible to infection by Omicron variants and natural Omicron infection elicits neutralizing antibodies that can cross-react with other sub-lineages of Omicron and other variants of concern.


Asunto(s)
COVID-19 , Humanos , Anticuerpos ampliamente neutralizantes , Cinética , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Interferones/genética , Anticuerpos Antivirales
3.
Sci Rep ; 11(1): 20095, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635729

RESUMEN

Bioactive fractions obtained from medicinal plants which have been used for the treatment of multiple diseases could exert their effects by targeting common pathways. Prior knowledge of their usage could allow us to identify novel molecular links. In this study, we explored the molecular basis of action of one such herbal formulation Cissampelos pareira L. (Cipa), used for the treatment of female hormone disorders and fever. Transcriptomic studies on MCF7 cell lines treated with Cipa extract carried out using Affymetrix arrays revealed a downregulation of signatures of estrogen response potentially modulated through estrogen receptor α (ERα). Molecular docking analysis identified 38 Cipa constituents that potentially bind (ΔG < - 7.5) with ERα at the same site as estrogen. The expression signatures in the connectivity map ( https://clue.io/; ) revealed high positive scores with translation inhibitors such as emetine (score: 99.61) and knockdown signatures of genes linked to the antiviral response such as ribosomal protein RPL7 (score: 99.92), which is a reported ERα coactivator. Further, gene knockdown experiments revealed that Cipa exhibits antiviral activity in dengue infected MCF7 cells potentially modulated through estrogen receptor 1. This approach reveals a novel pathway involving the ESR1-RPL7 axis which could be a potential target in dengue viral infection.


Asunto(s)
Antivirales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cissampelos/química , Dengue/tratamiento farmacológico , Receptor alfa de Estrógeno/metabolismo , Extractos Vegetales/farmacología , Transcriptoma/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/virología , Dengue/metabolismo , Dengue/patología , Dengue/virología , Virus del Dengue , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Células MCF-7
4.
Cell Microbiol ; 23(12): e13395, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619004

RESUMEN

Zinc-dependent viral proteins rely on intracellular zinc homeostasis for successful completion of infectious life-cycle. Here, we report that the intracellular labile zinc levels were elevated at early stages of dengue virus (DENV) infection in hepatic cells and this increase in free zinc was abolished in cells infected with UV-inactivated virus or with a DENV replication inhibitor implicating a role for zinc homeostasis in viral RNA replication. This change in free zinc was mediated by zinc transporter, ZIP8, as siRNA-mediated knockdown of ZIP8 resulted in abrogation of increase in free zinc levels leading to significant reduction in DENV titers suggesting a crucial role for ZIP8 in early stages of DENV replication. Furthermore, elevated free zinc levels correlated with high copy numbers of dengue genome in peripheral blood leukocytes obtained from dengue patients compared to healthy controls suggesting a critical role for zinc homeostasis in dengue infection. TAKE AWAYS: Dengue virus utilises cellular zinc homeostasis during replication of its RNA. ZIP8 upregulates free zinc levels during dengue virus replication. Enhanced viremia associates with elevated intracellular free zinc in dengue.


Asunto(s)
Virus del Dengue , Dengue , Línea Celular , Humanos , Replicación Viral , Zinc
5.
J Gen Virol ; 102(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33904816

RESUMEN

Reactive oxygen species (ROS) are chemically active species which are involved in maintaining cellular and signalling processes at physiological concentrations. Therefore, cellular components that regulate redox balance are likely to play a crucial role in viral life-cycle either as promoters of viral replication or with antiviral functions. Zinc is an essential micronutrient associated with anti-oxidative systems and helps in maintaining a balanced cellular redox state. Here, we show that zinc chelation leads to induction of reactive oxygen species (ROS) in epithelial cells and addition of zinc restores ROS levels to basal state. Addition of ROS (H2O2) inhibited dengue virus (DENV) infection in a dose-dependent manner indicating that oxidative stress has adverse effects on DENV infection. ROS affects early stages of DENV replication as observed by quantitation of positive and negative strand viral RNA. We observed that addition of ROS specifically affected viral titres of positive strand RNA viruses. We further demonstrate that ROS specifically altered SEC31A expression at the ER suggesting a role for SEC31A-mediated pathways in the life-cycle of positive strand RNA viruses and provides an opportunity to identify drug targets regulating oxidative stress responses for antiviral development.


Asunto(s)
Virus del Dengue/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno/farmacología , Replicación Viral , Zinc/farmacología , Adolescente , Aedes , Animales , Células CACO-2 , Niño , Preescolar , Chlorocebus aethiops , Cricetinae , Dengue/virología , Virus del Dengue/fisiología , Humanos , Estrés Oxidativo , ARN Viral
6.
Sci Rep ; 9(1): 19059, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836806

RESUMEN

Dengue virus (DENV) infection causes serious health problems in humans for which no drug is currently available. Recently, DENV NS2B-NS3 protease has been proposed as a primary target for anti-dengue drug discovery due to its important role in new virus particle formation by conducting DENV polyprotein cleavage. Triterpenoids from the medicinal fungus Ganoderma lucidum have been suggested as pharmacologically bioactive compounds and tested as anti-viral agents against various viral pathogens including human immunodeficiency virus. However, no reports are available concerning the anti-viral activity of triterpenoids from Ganoderma lucidum against DENV. Therefore, we employed a virtual screening approach to predict the functional triterpenoids from Ganoderma lucidum as potential inhibitors of DENV NS2B-NS3 protease, followed by an in vitro assay. From in silico analysis of twenty-two triterpenoids of Ganoderma lucidum, four triterpenoids, viz. Ganodermanontriol (-6.291 kcal/mol), Lucidumol A (-5.993 kcal/mol), Ganoderic acid C2 (-5.948 kcal/mol) and Ganosporeric acid A (-5.983 kcal/mol) were predicted to be viral protease inhibitors by comparison to reference inhibitor 1,8-Dihydroxy-4,5-dinitroanthraquinone (-5.377 kcal/mol). These results were further studied for binding affinity and stability using the molecular mechanics/generalized Born surface area method and Molecular Dynamics simulations, respectively. Also, in vitro viral infection inhibition suggested that Ganodermanontriol is a potent bioactive triterpenoid.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/fisiología , Descubrimiento de Drogas , Reishi/química , Serina Endopeptidasas/metabolismo , Triterpenos/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Virus del Dengue/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Serina Endopeptidasas/química , Termodinámica , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
7.
Front Immunol ; 10: 2347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632411

RESUMEN

Zinc is an essential micronutrient which regulates diverse physiological functions and has been shown to play a crucial role in viral infections. Zinc has a necessary role in the replication of many viruses, however, antiviral action of zinc has also been demonstrated in in vitro infection models most likely through induction of host antiviral responses. Therefore, depending on the host machinery that the virus employs at different stages of infection, zinc may either facilitate, or inhibit virus infection. In this study, we show that zinc plays divergent roles in rotavirus and dengue virus infections in epithelial cells. Dengue virus infection did not perturb the epithelial barrier functions despite the release of virus from the basolateral surface whereas rotavirus infection led to disruption of epithelial junctions. In rotavirus infection, zinc supplementation post-infection did not block barrier disruption suggesting that zinc does not affect rotavirus life-cycle or protects epithelial barriers post-infection suggesting the involvement of cellular pathways in the beneficial effect of zinc supplementation in enteric infections. Zinc depletion by N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) inhibited dengue virus and Japanese encephalitis virus (JEV) infection but had no effect on rotavirus. Time-of-addition experiments suggested that zinc chelation affected both early and late stages of dengue virus infectious cycle and zinc chelation abrogated dengue virus RNA replication. We show that transient zinc chelation induces ER stress and antiviral response by activating NF-kappaB leading to induction of interferon signaling. These results suggest that modulation of zinc homeostasis during virus infection could be a component of host antiviral response and altering zinc homeostasis may act as a potent antiviral strategy against flaviviruses.


Asunto(s)
Quelantes/farmacología , Virus del Dengue/efectos de los fármacos , Virus del Dengue/fisiología , FN-kappa B/metabolismo , Replicación Viral/efectos de los fármacos , Zinc/metabolismo , Animales , Línea Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dengue/tratamiento farmacológico , Dengue/genética , Dengue/metabolismo , Dengue/virología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/virología , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/virología , Homeostasis , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA