Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(28): 20254-20277, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38953057

RESUMEN

The use of metal-organic frameworks (MOFs) for wastewater treatment in continuous operation is a major challenge. To address this, the present study demonstrates the eco-friendly and economic synthesis of Ca-MOF immobilized cellulose beads (Ca-MOF-CB) derived from paper waste. The synthesized Ca-MOF-CB were characterized using standard analytical techniques. Batch sorption studies were performed to check the effect of cellulose composition (wt%), Ca-MOF loading, contact time, and initial metal ion (Pb2+, Cd2+, and Cu2+) concentration. Ca-MOF-CB beads exhibited outstanding equilibrium sorption capacities for Pb2+, Cd2+, and Cu2+, with estimated values of 281.22 ± 7.8, 104.01 ± 10.58, and 114.21 ± 9.68 mg g-1, respectively. Different non-linear isotherms and kinetic models were applied which confirmed the spontaneous, endothermic reactions for the physisorption of Pb2+, Cd2+, and Cu2+. Based on the highest equilibrium sorption capacity for Pb2+ ion, in-depth parametric column studies were conducted in an indigenously developed packed-bed column set-up. The effect of packed-bed height (10 and 20 cm), inlet flow rate (5 and 10 mL min-1), and inlet Pb2+ ion concentration (200, 300, and 500 mg L-1) were studied. The breakthrough curves obtained at different operating conditions were fitted with the empirical models viz. the bed depth service time (BDST), Yoon-Nelson, Thomas, and Yan to estimate the column design parameters. In order to determine the financial implications at large-scale industrial operations, an affordable synthesis cost of 1 kg of Ca-MOF-CB was estimated. Conclusively, the present study showed the feasibility of the developed Ca-MOF-CB for the continuous removal of metal ions at an industrial scale.

2.
Environ Sci Pollut Res Int ; 31(14): 21545-21567, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393560

RESUMEN

The present study demonstrates an eco-friendly and cost-effective synthesis of calcium terephthalate metal-organic frameworks (Ca-MOF). The Ca-MOF were composed of metal ions (Ca2+) and organic ligands (terephthalic acid; TPA); the former was obtained from egg shells, and the latter was obtained from processing waste plastic bottles. Detailed characterization using standard techniques confirmed the synthesis of Ca-MOF with an average particle size of 461.9 ± 15 nm. The synthesized Ca-MOF was screened for its ability to remove multiple metal ions from an aqueous solution. Based on the maximum sorption capacity, Pb2+, Cd2+, and Cu2+ ions were selected for individual parametric batch studies. The obtained results were interpreted using standard isotherms and kinetic models. The maximum sorption capacity (qm) obtained from the Langmuir model was found to be 644.07 ± 47, 391.4 ± 26, and 260.5 ± 14 mg g-1 for Pb2+, Cd2+, and Cu2+, respectively. Moreover, Ca-MOF also showed an excellent ability to remove all three metal ions simultaneously from a mixed solution. The metal nodes and bonded TPA from Ca-MOF were dissociated by the acid dissolution method, which protonated and isolated TPA for reuse. Further, the crystal structure of Ca-MOF was prepared and docked with protein targets of selected pathogenic water-borne microbes, which showed its disinfection potential. Overall, multiple metal sorption capability, regeneration studies, and broad-spectrum antimicrobial activity confirmed the versatility of synthesized Ca-MOF for industrial wastewater treatment.


Asunto(s)
Cadmio , Desinfección , Ácidos Ftálicos , Animales , Plomo , Simulación del Acoplamiento Molecular , Iones
3.
J Environ Manage ; 351: 119920, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157570

RESUMEN

Polystyrene (PS), a widely produced plastic with an extended carbon (C-C) backbone that resists microbial attack, is produced in enormous quantities throughout the World. Naturally occurring plasticizers such as plant cuticle and lignocelluloses share similar properties to synthetic plastics such as hydrophobicity, structural complexity, and higher recalcitrance to degradation. In due course of time, phytopathogenic fungi have evolved strategies to overcome these limitations and utilize lignocellulosic waste for their nutrition. The present investigation focuses on the utilization of phylloplane fungus, Curvularia dactyloctenicola VJP08 towards its ability to colonize and degrade commercially available PS lids. The fungus was observed to densely grow onto PS samples over an incubation period of 30 days. The morphological changes showcased extensive fungal growth with mycelial imbrication invading the PS surface for carbon extraction leading to the appearance of cracks and holes in the PS surface. It was further confirmed by EDS analysis which indicated that carbon was extracted from PS for the fungal growth. Further, 3.57% decrease in the weight, 8.8% decrease in the thickness and 2 °C decrease in the glass transition temperature (Tg) confirmed alterations in the structural integrity of PS samples by the fungal action. GC-MS/MS analysis of the treated PS samples also showed significant decrease in the concentration of benzene and associated aromatic derivatives confirming the degradation of PS samples and subsequent utilization of generated by-products by the fungus for growth. Overall, the present study confirmed the degradation and utilization of commercially available PS samples by phylloplane fungus C. dactyloctenicola VJP08. These findings establish a clear cross-assessment of the phylloplane fungi for their prospective use in the development of degradation strategies of synthetic plastics.


Asunto(s)
Curvularia , Poliestirenos , Espectrometría de Masas en Tándem , Poliestirenos/química , Hongos , Carbono , Plásticos
4.
J Environ Manage ; 325(Pt B): 116579, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302301

RESUMEN

Plastic pollution is a major environmental concern due to its deleterious effects on various ecosystems. The limitations and shortcomings of waste management strategies has led to the over-accumulation of plastic waste, mainly comprised of single-use plastics, such as polystyrene (PS). Considering the advantages of biotransformation over the other plastic disposal methods, it has become a major focus of the modern research. Biotransformation of plastics involves its microbial hydrolysis into short chain oligomers and monomers that are eventually assimilated as carbon source by the microbes leading to the release of CO2. As fungi are known to possess multifarious and highly regulated enzyme system capable of utilizing diverse nutrient sources, the present study explored the potential of Lichtheimia ramosa AJP11 towards myco-transformation of polystyrene sulfonate (PSS), a structural analogue of polystyrene (PS). During the 30-day incubation period of L. ramosa AJP11 in minimal salt medium (MSM)+1% PSS, the fungus showed 41.6% increment in its fresh weight biomass, indicating the utilization of PSS as sole carbon source. Further analysis revealed the generation of various reaction intermediates such as alkanes and fatty acids, crucial for the continuum of fungal metabolic pathways. Moreover, detection of PS oligomers such as cyclohexane and 2,4-DTBP confirmed the myco-transformation of PSS. The extracellular fungal protein profile showed considerable overexpression of a 14.4 kDa protein, characterized to be a hydrophobic surface binding (Hsb) protein, which is hypothesized to adsorb onto the PSS to facilitate its transformation. Further, in silico analysis of Hsb protein indicated it to be an amphiphilic α-helical protein with ability to bind styrene sulfonate unit via both hydrogen and hydrophobic interactions, with a binding energy of -5.02 kcal mol-1. These findings open new avenues for over expression of Hsb under controlled reactor conditions to accelerate the PS waste disposal.


Asunto(s)
Ecosistema , Poliestirenos , Poliestirenos/química , Plásticos , Carbono
5.
Proteins ; 91(4): 532-541, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36416087

RESUMEN

Styrene is a nonpolar organic compound used in very high volume for the industrial scale production of commercially important polymers such as polystyrene resins as well as copolymers like acrylonitrile butadiene styrene, latex, and rubber. These resins are widely used in the manufacturing of various products including single-use plastics such as disposable cups and containers, protective packaging, heat insulation, and so forth. The large-scale utilization leads to the over-accumulation of styrene waste in the environment causing deleterious health risks including cancer, neurological impairment, dysbiosis of central nervous system, and respiratory problems. To eliminate the accumulating waste. Microbial enzyme-based system represents the most environmental friendly and sustainable approach for elimination of styrene waste. However, comprehensive understanding of the enzyme-substrate interaction and associated pathways would be crucial for developing large-scale disposal systems. This study aims to understand the molecular interaction between the protein-ligand complexes of the styrene catabolic reactions by bacterial enzymes of sty operon. Molecular docking analysis for catalytic enzymes namely, styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase (PAD) of the bacterial sty operon was carried out with their individual substrates, that is, styrene, styrene oxide, and phenylacetic acid, respectively. The binding energy, amino acids forming binding cavity, and binding interactions between the protein-ligand binding sites were calculated for each case. The obtained binding energies showed a stable association of these complexes indicating the future scope of their utilization for large-scale bioremediation of styrene, and its commercially used polymers and copolymers.


Asunto(s)
Bacterias , Poliestirenos , Ligandos , Simulación del Acoplamiento Molecular , Polímeros/química
6.
Environ Sci Pollut Res Int ; 30(22): 61541-61561, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36280640

RESUMEN

The present study demonstrates the synthesis of eco-friendly metal oxide-clay composites (MgO-clay and CaO-clay) with phytochemical functionalization. The physical and chemical properties of prepared composites were characterized using standard techniques viz. scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The effect of pH on the dye adsorption capability of the synthesized composites was studied. The adsorption of an anionic dye methyl orange (MO) and a cationic due methylene blue (MB) was favored in the acidic and basic regions, respectively. The Taguchi design approach was adopted for the removal of MO and MB from wastewater using the synthesized composites. The obtained results suggest that initial dye concentration and composite dosage were the most influential parameters in dye removal among all the studied parameters. The adsorption experiments were carried out using MgO-clay and CaO-clay composites with the optimum conditions obtained from Taguchi optimization to validate the predicted response. The experimental parameters viz. the effect of contact time, initial dye concentration, and solution temperature were studied for screened composite (CaO-clay) with optimized conditions. The obtained results were interpreted using standard isotherms and kinetic models. A maximum adsorption capacity of 571 ± 10 and 859 ± 14 mg g-1 was obtained from the Langmuir adsorption isotherm for MO and MB, respectively. Regeneration studies suggested that the CaO-clay composite can be utilized up to 3 cycles with reduced adsorption capacity of the dyes over cycles due to the solid binding nature of dyes on the CaO-clay composite. The fresh and utilized CaO-clay composite were tested for their environmental toxicity analysis using ecologically important soil microorganisms. The obtained results suggested no detrimental effects on soil microbe's functionality, indicating their threat-free disposal in the soil environment.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Arcilla/química , Colorantes/química , Óxido de Magnesio , Aguas Residuales , Óxidos , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química , Azul de Metileno/química
7.
J Environ Manage ; 307: 114523, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065379

RESUMEN

In the present study, synthesis of eco-friendly Cu-based metal oxides nanoparticles [CuO, Cu2O, and CuO&Cu2O nanoparticles (NPs)] without and with functionalization with Diethylene glycol (DEG) has been demonstrated. The synthesized NPs were screened for their ability to adsorb multiple heavy metal ions from an aqueous solution. Based on the maximum Cadmium (Cd+2) ion adsorption capacity, functionalized Cu2O (fCu2O) NPs were selected for the detailed characterization and batch studies. The average size of fCu2O NPs was found to be 57.4 ± 6.14 nm in comparison to NPs without capping (72.6 ± 5.19 nm). The experimental parameters viz. contact time, initial pH, and initial concentration were optimized, and the obtained results were interpreted using standard isotherms and kinetic models. The maximum Cd+2 adsorption on fCu2O NPs was observed at initial solution pH 7. The adsorption of Cd+2 was found to be decreased at acidic pH due to the protonation of functional groups present on the NPs surface. A maximum Cd+2 adsorption capacity of 204 ± 6.2 mg g-1 was obtained from the Langmuir adsorption isotherm. The crystal structure of NPs was prepared and docked with the protein targets of selected soil microbes in order to determine their ecotoxicity. The obtained results showed that NPs exhibited low affinity towards protein targets in comparison to the standard used. It suggests that NPs have less impact on the functionality of soil microbes and are thus safe for their disposal into the soil micro-environment.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Adsorción , Cadmio/toxicidad , Concentración de Iones de Hidrógeno , Cinética , Nanopartículas del Metal/toxicidad , Simulación del Acoplamiento Molecular , Óxidos , Contaminantes Químicos del Agua/análisis
8.
ACS Appl Bio Mater ; 5(2): 801-817, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35073697

RESUMEN

The exceptional increase in antibiotic resistance in past decades motivated the scientific community to use silver as a potential antibacterial agent. However, due to its unknown antibacterial mechanism and the pattern of bacterial resistance to silver species, it has not been revolutionized in the health sector. This study deciphers mechanistic aspects of silver species, i.e., ions and lysozyme-coated silver nanoparticles (L-Ag NPs), against E. coli K12 through RNA sequencing analysis. The obtained results support the reservoir nature of nanoparticles for the controlled release of silver ions into bacteria. This study differentiates between the antibacterial mechanism of silver species by discussing the pathway of their entry in bacteria, sequence of events inside cells, and response of bacteria to overcome silver stress. Controlled release of ions from L-Ag NPs not only reduces bacterial growth but also reduces the likelihood of resistance development. Conversely, direct exposure of silver ions, leads to rapid activation of the bacterial defense system leading to development of resistance against silver ions, like the well-known antibiotic resistance problem. These findings provide valuable insight on the mechanism of silver resistance and antibacterial strategies deployed by E. coli K12, which could be a potential target for the generation of aim-based and effective nanoantibiotics.


Asunto(s)
Escherichia coli K12 , Nanopartículas del Metal , Antibacterianos/farmacología , Preparaciones de Acción Retardada , Escherichia coli/genética , Escherichia coli K12/genética , Iones , Nanopartículas del Metal/uso terapéutico , Plata/farmacología
9.
Front Microbiol ; 12: 638640, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658987

RESUMEN

Infections associated with antimicrobial-resistant bacteria now represent a significant threat to human health using conventional therapy, necessitating the development of alternate and more effective antibacterial compounds. Silver nanoparticles (Ag NPs) have been proposed as potential antimicrobial agents to combat infections. A complete understanding of their antimicrobial activity is required before these molecules can be used in therapy. Lysozyme coated Ag NPs were synthesized and characterized by TEM-EDS, XRD, UV-vis, FTIR spectroscopy, zeta potential, and oxidative potential assay. Biochemical assays and deep level transcriptional analysis using RNA sequencing were used to decipher how Ag NPs exert their antibacterial action against multi-drug resistant Klebsiella pneumoniae MGH78578. RNAseq data revealed that Ag NPs induced a triclosan-like bactericidal mechanism responsible for the inhibition of the type II fatty acid biosynthesis. Additionally, released Ag+ generated oxidative stress both extra- and intracellularly in K. pneumoniae. The data showed that triclosan-like activity and oxidative stress cumulatively underpinned the antibacterial activity of Ag NPs. This result was confirmed by the analysis of the bactericidal effect of Ag NPs against the isogenic K. pneumoniae MGH78578 ΔsoxS mutant, which exhibits a compromised oxidative stress response compared to the wild type. Silver nanoparticles induce a triclosan-like antibacterial action mechanism in multi-drug resistant K. pneumoniae. This study extends our understanding of anti-Klebsiella mechanisms associated with exposure to Ag NPs. This allowed us to model how bacteria might develop resistance against silver nanoparticles, should the latter be used in therapy.

10.
Sci Total Environ ; 772: 144797, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578167

RESUMEN

Surface functionalization on silver nanoparticles greatly affects the dynamics of protein corona formation. In the present study, the implications of protein pre-coating on corona formation and nanoparticle's physiological stability, cellular uptake and toxicity were studied on similar sized alkaline protease coated nanoparticles of biological and chemical origin along with the uncoated nanoparticle as compared to the albumin coated nanoparticles. All four nanoparticle types invited serum protein adsorption on their surface. However, the presence of protein pre-coating on nanoparticle surface significantly reduced the extent of further protein binding. Moreover, corona formation on pristine nanoparticles significantly improved their stability in the biological medium. The effect was found to be diluted in protein pre-coated nanoparticles with due exception. Results obtained in the cell-based experiment suggested that the nanoparticles binding to the cell, its uptake, and toxicity in different cell lines can be directly linked to their physiological stability owing to corona formation.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Corona de Proteínas , Adsorción , Nanopartículas del Metal/toxicidad , Proteínas , Plata/toxicidad
11.
ACS Appl Mater Interfaces ; 10(35): 29325-29337, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30096228

RESUMEN

Pseudomonas aeruginosa, a Gram-negative rod-shaped bacterium is a notorious pathogen causing chronic infections. Its ability to form antibiotic-resistant biofilm has raised the need for the development of alternative treatment approaches. An ideal alternate can be silver nanoparticles known for their strong yet tunable bactericidal activity. However, their use in commercial in vivo medicine could not see the light of the day because of the unwanted toxicity of silver in the host cells at higher concentrations. Thus, strategies which can modulate the bacterial cell-silver nanoparticle interactions thereby reducing the amount of nanoparticles required to kill a typical number of bacterial cells are utmost welcomed. The current work showcases one such strategy by functionalizing the silver nanoparticles with l-fucose to increase their interactions with the LecB lectins present on P. aeruginosa PAO1. The advantage of this approach lies in the higher bactericidal and antibiofilm activity of fucose-functionalized silver nanoparticles (FNPs) as compared to the citrate-capped silver nanoparticles (CNPs) of similar size and concentrations. The superior bactericidal potential of FNPs as demonstrated by fluorescence-assisted cell sorting, confocal laser scanning microscopy, and transmission electron microscopy analyses may be attributed to the higher reactive oxygen species generation and oxidative membrane damage. Additionally, FNPs prevented the formation of biofilms by downregulating the expression of various virulence genes at lower concentrations as compared to CNPs. The practical applicability of the approach was demonstrated by preventing bacterial colonization on artificial silicone rubber surfaces. These results can be extrapolated in the treatment of catheter-associated urinary tract infections caused by P. aeruginosa. In conclusion, the present work strongly advocates the use of antivirulence targets and their corresponding binding residues for the augmentation of the bactericidal effect of silver nanoparticles.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Nanopartículas del Metal , Pseudomonas aeruginosa/efectos de los fármacos , Plata/farmacología , Catéteres Urinarios/microbiología , Antibacterianos/química , Fucosa/química , Nanopartículas del Metal/química
12.
J Nanosci Nanotechnol ; 18(10): 6653-6670, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29954482

RESUMEN

Recent years have witnessed unprecedented increase in the use of nanoparticles in various sectors viz. electronics, catalysis, agriculture, textile, cosmetics, bio-medicine, packaging, house-holds and food-associated consumer products. This has led to the inevitable release of nanoparticles into the environment, which can have negative impact on living beings. Humans can also be exposed to these nanoparticles either intentionally or accidently. Nanoparticles can enter in the human body through food chain, inhalation, open wounds, drugs and intravenous injections etc. In majority of these cases, the nanoparticles may pass through the various cell layers, cell sap and finally enter into the blood. Upon interaction with biological fluid, nanoparticles come in close proximity particularly to the proteins present in the fluid. The assembly of proteins surrounding the nanoparticle's surface is called as protein corona and their complex is known as protein-nanoparticle complex. Formation of protein corona is a vibrant and driving process, which plays a pivotal role in the functioning of nanoparticles in biological systems. Moreover, due to interaction of proteins with nanoparticles, conformational changes may occur in the native structure of protein, which may lead to change in the functioning of proteins towards its cellular interaction. The present review provides in-depth knowledge about the formation of protein corona around nanoparticles and the factors regulating this process. Further, it discusses various techniques that can be used for the protein corona analysis and obtaining information about molecular consequences upon nanoparticle's exposure. Finally, the functional aspects of protein-nanoparticle complex have been discussed in detail. In-depth understanding of protein-nanoparticles complex can be instrumental to generate well-suited nanoparticles with desired surface characteristics in the way to biological application.


Asunto(s)
Nanopartículas/metabolismo , Corona de Proteínas/metabolismo , Animales , Humanos , Nanopartículas/análisis , Tamaño de la Partícula , Unión Proteica , Conformación Proteica , Corona de Proteínas/análisis , Propiedades de Superficie
13.
Mater Sci Eng C Mater Biol Appl ; 90: 739-749, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29853145

RESUMEN

The unprecedented increase in antibiotic resistance in this era has resuscitated the attention of scientific community to exploit silver and its various species as antimicrobial agents. Plenty of studies have been done to measure the antimicrobial potential of silver species (cationic silver, metallic Ag0 or silver nanoparticles, silver oxide particulates etc.) and indicated that membrane damage, oxidative stress, protein dysfunction and DNA damage to be the possible cause of injury to the microbial cell. However, the precise molecular mechanism of their mode of action has remained unclear, which makes an obstacle towards the generation of potential antibacterial agent against various pathogenic and multidrug resistant (MDR) bacteria. In order to endeavor this issue, one should first have the complete understanding about the resistance mechanisms present in bacteria that can be a therapeutic target for the silver-based drug formulations. Apart from this, in-depth understanding of the interactions of various silver species (with the biological media) is a probable deciding factor for the synthesis of silver-based drug formulations because the particular form and physico-chemical properties of silver can ultimately decide their antimicrobial action. In context to above mentioned serious concerns, the present article aims to discuss the mechanisms behind the confrontation of bacteria against various drugs and the effect of physico-chemical properties of silver species on their bactericidal action as well as critically evaluates the available reports on bacterial transcriptomic and proteomic profiles upon the exposure of various silver species. Further, this review state the mechanism of action that needs to be followed for the complete understanding of toxic potential of silver nanoparticles, which will open a possibility to synthesize new silver nanoparticle based antimicrobial systems with desired properties to ensure their safe use, exposure over extended period and fate in human body and environment.


Asunto(s)
Antibacterianos/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
14.
Ecotoxicology ; 26(2): 238-249, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28083774

RESUMEN

Rapid utilization of nano-based products will inevitably release nanoparticles into the environment with unidentified consequences. Plants, being an integral part of ecosystem play a vital role in the incorporation of nanoparticles in food chain and thus, need to be critically assessed. The present study assesses the comparative phytotoxicity of nanoparticle, bulk and ionic forms of zinc at different concentrations on selected plant species with varying seed size and surface anatomy. ZnO nanoparticles were chosen in view of their wide spread use in cosmetics and health care products, which allow their direct release in the environment. The impact on germination rate, shoot & root length and vigour index were evaluated. A concentration dependent inhibition of seed germination as well as seedling length was observed in all the tested plants. Due to the presence of thick cuticle on testa and root, pearl millet (xerophytic plant) was found to be relatively less sensitive to ZnO nanoparticles as compared to wheat and tomato (mesophytic plants) with normal cuticle layer. No correlation was observed between nanoparticles toxicity and seed size. The results indicated that variations in surface anatomy of seeds play a crucial role in determining the phytotoxicity of nanoparticles. The present findings significantly contribute to assess potential consequences of nanoparticle release in environment particularly with major emphasis on plant systems. It is the first report which suggests that variations observed in phytotoxicity of nanoparticles is mainly due to the predominant differences in size and surface anatomy of tested plant seeds and root architecture. Effect of various concentrations of nano ZnO, bulk ZnO and zinc sulphate on the growth of pearl millet (A), tomato (B) and wheat (C) seedlings.


Asunto(s)
Nanopartículas del Metal/toxicidad , Pennisetum/anatomía & histología , Solanum lycopersicum/anatomía & histología , Triticum/anatomía & histología , Óxido de Zinc/toxicidad , Solanum lycopersicum/efectos de los fármacos , Pennisetum/efectos de los fármacos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Semillas/anatomía & histología , Semillas/efectos de los fármacos , Triticum/efectos de los fármacos
15.
ACS Omega ; 2(4): 1489-1504, 2017 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023637

RESUMEN

In recent years, the use of silver nanoparticles (AgNPs) in biomedical applications has shown an unprecedented boost along with simultaneous expansion of rapid, high-yielding, and sustainable AgNP synthesis methods that can deliver particles with well-defined characteristics. The present study demonstrates the potential of metal-tolerant soil fungal isolate Penicillium shearii AJP05 for the synthesis of protein-capped AgNPs. The particles were characterized using standard techniques, namely, UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The anticancer activity of the biosynthesized AgNPs was analyzed in two different cell types with varied origin, for example, epithelial (hepatoma) and mesenchymal (osteosarcoma). The biological NPs (bAgNPs) with fungal-derived outer protein coat were found to be more cytotoxic than bare bAgNPs or chemically synthesized AgNPs (cAgNPs). Elucidation of the molecular mechanism revealed that bAgNPs induce cytotoxicity through elevation of reactive oxygen species (ROS) levels and induction of apoptosis. Upregulation of autophagy and activation of JNK signaling were found to act as a prosurvival strategy upon bAgNP treatment, whereas ERK signaling served as a prodeath signal. Interestingly, inhibition of autophagy increased the production of ROS, resulting in enhanced cell death. Finally, bAgNPs were also found to sensitize cells with acquired resistance to cisplatin, providing valuable insights into the therapeutic potential of bAgNPs. To the best of our knowledge, this is the first study that provides a holistic idea about the molecular mechanisms behind the cytotoxic activity of protein-capped AgNPs synthesized using a metal-tolerant soil fungus.

16.
J Environ Manage ; 183: 22-32, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27567934

RESUMEN

In recent years, the surging demand of nanomaterials has boosted unprecedented expansion of research for the development of high yielding and sustainable synthesis methods which can deliver nanomaterials with desired characteristics. Unlike the well-established physico-chemical methods which have various limitations, biological methods inspired by mimicking natural biomineralization processes have great potential for nanoparticle synthesis. An eco-friendly and sustainable biological method that deliver particles with well-defined shape, size and compositions can be developed by selecting a proficient organism followed by fine tuning of various process parameter. The present study revealed high metal tolerance ability of a soil fungus Cladosporium oxysporum AJP03 and its potential for extracellular synthesis of gold nanoparticles. The morphology, composition and crystallinity of nanoparticles were confirmed using standard techniques. The synthesized particles were quasi-spherical in shape with fcc packing and an average particle size of 72.32 ± 21.80 nm. A series of experiments were conducted to study the effect of different process parameters on particle size and yield. Biomass: water ratio of 1:5 and 1 mM precursor salt concentration at physiological pH (7.0) favoured the synthesis of well-defined gold nanoparticles with maximum yield. The as-synthesized nanoparticles showed excellent catalytic efficiency towards sodium borohydride mediated reduction of rhodamine B (2.5 × 10(-5) M) within 7 min of reaction time under experimental conditions. Presence of proteins as capping material on the nanoparticle surface was found to be responsible for this remarkable catalytic efficiency. The present approach can be extrapolated to develop controlled and up-scalable process for mycosynthesis of nanoparticles for diverse applications.


Asunto(s)
Cladosporium/metabolismo , Oro , Nanopartículas del Metal , Rodaminas/química , Borohidruros/química , Catálisis , Oro/química , Oro/metabolismo , Nanopartículas del Metal/química , Oxidación-Reducción , Tamaño de la Partícula , Microbiología del Suelo
17.
PLoS One ; 10(7): e0134337, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26226385

RESUMEN

The present study demonstrates an economical and environmental affable approach for the synthesis of "protein-capped" silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties.


Asunto(s)
Antibacterianos/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Antibacterianos/análisis , Antibacterianos/química , Antibacterianos/uso terapéutico , Bacillus cereus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Nanopartículas del Metal/análisis , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Proteínas , Pseudomonas putida/efectos de los fármacos , Espectrofotometría Atómica , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
18.
J Basic Microbiol ; 53(4): 318-26, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22915081

RESUMEN

The effects of root-associated fungi (Aspergillus awamori and Glomus mosseae) and plant growth promoting rhizobacteria (PGPR) (Pseudomonas putida, Pseudomonas alcaligenes and Paenibacillus polymyxa) were studied alone and in combination in glasshouse experiments on the growth of pea, enzyme activity (peroxidase and catalase) and reproduction of root-knot nematode Meloidogyne incognita. Application of A. awamori, G. mosseae and PGPR caused a significant increase in pea growth and enzyme activities of both nematode inoculated and uninoculated plants. A. awamori was more effective in reducing galling and improving the growth of nematode inoculated plants than P. alcaligenes or P. polymyxa. The greatest increase in growth, enzyme activities of nematode-inoculated plants and reduction in galling and nematode multiplication was observed when A. awamori was used with P. putida or G. mosseae as compared to the other combinations tested. Percentage root colonization was higher when AM fungus inoculated plants were treated with P. putida both in presence and absence of nematode.


Asunto(s)
Pisum sativum/microbiología , Pisum sativum/parasitología , Raíces de Plantas/microbiología , Microbiología del Suelo , Tylenchoidea/crecimiento & desarrollo , Animales , Aspergillus/crecimiento & desarrollo , Glomeromycota/crecimiento & desarrollo , Interacciones Microbianas , Paenibacillus/crecimiento & desarrollo , Pisum sativum/enzimología , Pisum sativum/crecimiento & desarrollo , Pseudomonas alcaligenes/crecimiento & desarrollo , Pseudomonas putida/crecimiento & desarrollo
19.
Appl Microbiol Biotechnol ; 97(2): 859-69, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22382164

RESUMEN

Using natural processes as inspiration, the present study demonstrates a positive correlation between zinc metal tolerance ability of a soil fungus and its potential for the synthesis of zinc oxide (ZnO) nanoparticles. A total of 19 fungal cultures were isolated from the rhizospheric soils of plants naturally growing at a zinc mine area in India and identified on the genus, respectively the species level. Aspergillus aeneus isolate NJP12 has been shown to have a high zinc metal tolerance ability and a potential for extracellular synthesis of ZnO nanoparticles under ambient conditions. UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, and energy dispersive spectroscopy studies further confirmed the crystallinity, morphology, and composition of synthesized ZnO nanoparticles. The results revealed the synthesis of spherical nanoparticles coated with protein molecules which served as stabilizing agents. Investigations on the role of fungal extracellular proteins in the synthesis of nanoparticles indicated that the process is nonenzymatic but involves amino acids present in the protein chains.


Asunto(s)
Nanopartículas/química , Óxido de Zinc/química , Aspergillus/metabolismo , Biomimética , Rizosfera
20.
Nanoscale ; 3(2): 635-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21088776

RESUMEN

The present study demonstrates an eco-friendly and low cost protocol for synthesis of silver nanoparticles using the cell-free filtrate of Aspergillus flavus NJP08 when supplied with aqueous silver (Ag+) ions. Identification of the fungal isolate was based on nuclear ribosomal DNA internal transcribed spacer (ITS) identities. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) revealed the formation of spherical metallic silver nanoparticles. The average particle size calculated using Dynamic Light Scattering measurements (DLS) was found to be 17±5.9 nm. UV-Visible and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of extracellular proteins. SDS-PAGE profiles of the extracellular proteins showed the presence of two intense bands of 32 and 35 kDa, responsible for the synthesis and stability of silver nanoparticles, respectively. A probable mechanism behind the biosynthesis is discussed, which leads to the possibility of using the present protocol in future "nano-factories".


Asunto(s)
Aspergillus flavus/metabolismo , Nanopartículas del Metal/química , Plata/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Nanopartículas del Metal/ultraestructura , Nitrato de Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...