Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 64(4): 30, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37097227

RESUMEN

Purpose: The unfolded protein response (UPR) is triggered when the protein folding capacity of the endoplasmic reticulum (ER) is overwhelmed and misfolded proteins accumulate in the ER, a condition referred to as ER stress. IRE1α is an ER-resident protein that plays major roles in orchestrating the UPR. Several lines of evidence implicate the UPR and its transducers in neurodegenerative diseases, including retinitis pigmentosa (RP), a group of inherited diseases that cause progressive dysfunction and loss of rod and cone photoreceptors. This study evaluated the contribution of IRE1α to photoreceptor development, homeostasis, and degeneration. Methods: We used a conditional gene targeting strategy to selectively inactivate Ire1α in mouse rod photoreceptors. We used a combination of optical coherence tomography (OCT) imaging, histology, and electroretinography (ERG) to assess longitudinally the effect of IRE1α deficiency in retinal development and function. Furthermore, we evaluated the IRE1α-deficient retina responses to tunicamycin-induced ER stress and in the context of RP caused by the rhodopsin mutation RhoP23H. Results: OCT imaging, histology, and ERG analyses did not reveal abnormalities in IRE1α-deficient retinas up to 3 months old. However, by 6 months of age, the Ire1α mutant animals showed reduced outer nuclear layer thickness and deficits in retinal function. Furthermore, conditional inactivation of Ire1α in rod photoreceptors accelerated retinal degeneration caused by the RhoP23H mutation. Conclusions: These data suggest that IRE1α is dispensable for photoreceptor development but important for photoreceptor homeostasis in aging retinas and for protecting against ER stress-mediated photoreceptor degeneration.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Ratones , Envejecimiento , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Degeneración Retiniana/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico
2.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L564-L580, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170357

RESUMEN

After lung injury, damage-associated transient progenitors (DATPs) emerge, representing a transitional state between injured epithelial cells and newly regenerated alveoli. DATPs express profibrotic genes, suggesting that they might promote idiopathic pulmonary fibrosis (IPF). However, the molecular pathways that induce and/or maintain DATPs are incompletely understood. Here we show that the bifunctional kinase/RNase-IRE1α-a central mediator of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress is a critical promoter of DATP abundance and function. Administration of a nanomolar-potent, monoselective kinase inhibitor of IRE1α (KIRA8)-or conditional epithelial IRE1α gene knockout-both reduce DATP cell number and fibrosis in the bleomycin model, indicating that IRE1α cell-autonomously promotes transition into the DATP state. IRE1α enhances the profibrotic phenotype of DATPs since KIRA8 decreases expression of integrin αvß6, a key activator of transforming growth factor ß (TGF-ß) in pulmonary fibrosis, corresponding to decreased TGF-ß-induced gene expression in the epithelium and decreased collagen accumulation around DATPs. Furthermore, IRE1α regulates DNA damage response (DDR) signaling, previously shown to promote the DATP phenotype, as IRE1α loss-of-function decreases H2AX phosphorylation, Cdkn1a (p21) expression, and DDR-associated secretory gene expression. Finally, KIRA8 treatment increases the differentiation of Krt19CreERT2-lineage-traced DATPs into type 1 alveolar epithelial cells after bleomycin injury, indicating that relief from IRE1α signaling enables DATPs to exit the transitional state. Thus, IRE1α coordinates a network of stress pathways that conspire to entrap injured cells in the DATP state. Pharmacological blockade of IRE1α signaling helps resolve the DATP state, thereby ameliorating fibrosis and promoting salutary lung regeneration.


Asunto(s)
Endorribonucleasas , Fibrosis Pulmonar Idiopática , Apoptosis/fisiología , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Proteínas Serina-Treonina Quinasas/genética
3.
Nat Chem Biol ; 17(11): 1148-1156, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34556859

RESUMEN

The unfolded protein response (UPR) homeostatically matches endoplasmic reticulum (ER) protein-folding capacity to cellular secretory needs. However, under high or chronic ER stress, the UPR triggers apoptosis. This cell fate dichotomy is promoted by differential activation of the ER transmembrane kinase/endoribonuclease (RNase) IRE1α. We previously found that the RNase of IRE1α can be either fully activated or inactivated by ATP-competitive kinase inhibitors. Here we developed kinase inhibitors, partial antagonists of IRE1α RNase (PAIRs), that partially antagonize the IRE1α RNase at full occupancy. Biochemical and structural studies show that PAIRs promote partial RNase antagonism by intermediately displacing the helix αC in the IRE1α kinase domain. In insulin-producing ß-cells, PAIRs permit adaptive splicing of Xbp1 mRNA while quelling destructive ER mRNA endonucleolytic decay and apoptosis. By preserving Xbp1 mRNA splicing, PAIRs allow B cells to differentiate into immunoglobulin-producing plasma cells. Thus, an intermediate RNase-inhibitory 'sweet spot', achieved by PAIR-bound IRE1α, captures a desirable conformation for drugging this master UPR sensor/effector.


Asunto(s)
Adenosina Trifosfato/farmacología , Endorribonucleasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Adenosina Trifosfato/química , Endorribonucleasas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Desplegamiento Proteico/efectos de los fármacos
4.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878237

RESUMEN

BACKGROUND: Inositol-requiring enzyme 1α (IRE1α), along with protein kinase R-like endoplasmic reticulum kinase (PERK), is a principal regulator of the unfolded protein response (UPR). Recently, the 'mono'-specific IRE1α inhibitor, kinase-inhibiting RNase attenuator 6 (KIRA6), demonstrated a promising effect against multiple myeloma (MM). Side-stepping the clinical translation, a detailed UPR phenotype in patients with MM and the mechanisms of how KIRA8 works in MM remains unclear. METHODS: We characterized UPR phenotypes in the bone marrow of patients with newly diagnosed MM. Then, in human MM cells we analyzed the possible anti-tumor mechanisms of KIRA8 and a Food and Drug Administration (FDA)-approved drug, nilotinib, which we recently identified as having a strong inhibitory effect against IRE1α activity. Finally, we performed an RNA-sequence analysis to detect key IRE1α-related molecules against MM. RESULTS: We illustrated the dominant induction of adaptive UPR markers under IRE1α over the PERK pathway in patients with MM. In human MM cells, KIRA8 decreased cell viability and induced apoptosis, along with the induction of C/EBP homologous protein (CHOP); its combination with bortezomib exhibited more anti-myeloma effects than KIRA8 alone. Nilotinib exerted a similar effect compared with KIRA8. RNA-sequencing identified Polo-like kinase 2 (PLK2) as a KIRA8-suppressed gene. Specifically, the IRE1α overexpression induced PLK2 expression, which was decreased by KIRA8. KIRA8 and PLK2 inhibition exerted anti-myeloma effects with apoptosis induction and the regulation of cell proliferation. Finally, PLK2 was pathologically confirmed to be highly expressed in patients with MM. CONCLUSION: Dominant activation of adaptive IRE1α was established in patients with MM. Both KIRA8 and nilotinib exhibited anti-myeloma effects, which were enhanced by bortezomib. Adaptive IRE1α signaling and PLK2 could be potential therapeutic targets and biomarkers in MM.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Endorribonucleasas/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida , Mieloma Múltiple/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Adulto , Anciano , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Estudios Transversales , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/patología , Pronóstico , Pirazinas/administración & dosificación , Pirimidinas/administración & dosificación , Estudios Retrospectivos , Células Tumorales Cultivadas
5.
J Diabetes Investig ; 11(4): 801-813, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31925927

RESUMEN

AIMS/INTRODUCTION: Under irremediable endoplasmic reticulum (ER) stress, hyperactivated inositol-requiring enzyme 1α (IRE1α) triggers the terminal unfolded protein response (T-UPR), causing crucial cell dysfunction and apoptosis. We hypothesized that nicotinic acetylcholine receptor (nAChR) signaling regulates IRE1α activation to protect ß-cells from the T-UPR under ER stress. MATERIALS AND METHODS: The effects of nicotine on IRE1α activation and key T-UPR markers, thioredoxin-interacting protein and insulin/proinsulin, were analyzed by real-time polymerase chain reaction and western blotting in rat INS-1 and human EndoC-ßH1 ß-cell lines. Doxycycline-inducible IRE1α overexpression or ER stress agents were used to induce IRE1α activation. An α7 subunit-specific nAChR agonist (PNU-282987) and small interfering ribonucleic acid for α7 subunit-specific nAChR were used to modulate nAChR signaling. RESULTS: Nicotine inhibits the increase in thioredoxin-interacting protein and the decrease in insulin 1/proinsulin expression levels induced by either forced IRE1α hyperactivation or ER stress agents. Nicotine attenuated X-box-binding protein-1 messenger ribonucleic acid site-specific splicing and IRE1α autophosphorylation induced by ER stress. Furthermore, PNU-282987 attenuated T-UPR induction by either forced IRE1α activation or ER stress agents. The effects of nicotine on attenuating thioredoxin-interacting protein and preserving insulin 1 expression levels were attenuated by pharmacological and genetic inhibition of α7 nAChR. Finally, nicotine suppressed apoptosis induced by either forced IRE1α activation or ER stress agents. CONCLUSIONS: Our findings suggest that nAChR signaling regulates IRE1α activation to protect ß-cells from the T-UPR and apoptosis under ER stress partly through α7 nAChR. Targeting nAChR signaling to inhibit the T-UPR cascade may therefore hold therapeutic promise by thwarting ß-cell death in diabetes.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Nicotínicos/metabolismo , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Apoptosis/fisiología , Línea Celular , Humanos , Células Secretoras de Insulina/metabolismo , Sustancias Protectoras/farmacología , Ratas
6.
Cancer Res ; 79(24): 6190-6203, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31672843

RESUMEN

Master regulators of the unfolded protein response (UPR), IRE1α and PERK, promote adaptation or apoptosis depending on the level of endoplasmic reticulum (ER) stress. Although the UPR is activated in many cancers, its effects on tumor growth remain unclear. Derived from endocrine cells, pancreatic neuroendocrine tumors (PanNET) universally hypersecrete one or more peptide hormones, likely sensitizing these cells to high ER protein-folding stress. To assess whether targeting the UPR is a viable therapeutic strategy, we analyzed human PanNET samples and found evidence of elevated ER stress and UPR activation. Genetic and pharmacologic modulation of IRE1α and PERK in cultured cells, xenograft, and spontaneous genetic (RIP-Tag2) mouse models of PanNETs revealed that UPR signaling was optimized for adaptation and that inhibiting either IRE1α or PERK led to hyperactivation and apoptotic signaling through the reciprocal arm, thereby halting tumor growth and survival. These results provide a strong rationale for therapeutically targeting the UPR in PanNETs and other cancers with elevated ER stress. SIGNIFICANCE: The UPR is upregulated in pancreatic neuroendocrine tumors and its inhibition significantly reduces tumor growth in preclinical models, providing strong rationale for targeting the UPR in these cancers.


Asunto(s)
Endorribonucleasas/antagonistas & inhibidores , Tumores Neuroendocrinos/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , eIF-2 Quinasa/antagonistas & inhibidores , Adenina/análogos & derivados , Adenina/farmacología , Adenina/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Femenino , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Ratones , Ratones Transgénicos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , eIF-2 Quinasa/metabolismo
7.
ACS Chem Biol ; 14(12): 2595-2605, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31609569

RESUMEN

The dual kinase endoribonuclease IRE1 is a master regulator of cell fate decisions in cells experiencing endoplasmic reticulum (ER) stress. In mammalian cells, there are two paralogs of IRE1: IRE1α and IRE1ß. While IRE1α has been extensively studied, much less is understood about IRE1ß and its role in signaling. In addition, whether the regulation of IRE1ß's enzymatic activities varies compared to IRE1α is not known. Here, we show that the RNase domain of IRE1ß is enzymatically active and capable of cleaving an XBP1 RNA mini-substrate in vitro. Using ATP-competitive inhibitors, we find that, like IRE1α, there is an allosteric relationship between the kinase and RNase domains of IRE1ß. This allowed us to develop a novel toolset of both paralog specific and dual-IRE1α/ß kinase inhibitors that attenuate RNase activity (KIRAs). Using sequence alignments of IRE1α and IRE1ß, we propose a model for paralog-selective inhibition through interactions with nonconserved residues that differentiate the ATP-binding pockets of IRE1α and IRE1ß.


Asunto(s)
Endorribonucleasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Regulación Alostérica , Animales , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleasas/metabolismo
8.
Mol Metab ; 27S: S60-S68, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500832

RESUMEN

BACKGROUND: Myriad challenges to the proper folding and structural maturation of secretory pathway client proteins in the endoplasmic reticulum (ER) - a condition referred to as "ER stress" - activate intracellular signaling pathways termed the unfolded protein response (UPR). SCOPE OF REVIEW: Through executing transcriptional and translational programs the UPR restores homeostasis in those cells experiencing manageable levels of ER stress. But the UPR also actively triggers cell degeneration and apoptosis in those cells that are encountering ER stress levels that exceed irremediable thresholds. Thus, UPR outputs are "double-edged". In pancreatic islet ß-cells, numerous genetic mutations affecting the balance between these opposing UPR functions cause diabetes mellitus in both rodents and humans, amply demonstrating the principle that the UPR is critical for the proper functioning and survival of the cell. MAJOR CONCLUSIONS: Specifically, we have found that the UPR master regulator IRE1α kinase/endoribonuclease (RNase) triggers apoptosis, ß-cell degeneration, and diabetes, when ER stress reaches critical levels. Based on these mechanistic findings, we find that novel small molecule compounds that inhibit IRE1α during such "terminal" UPR signaling can spare ER stressed ß-cells from death, perhaps affording future opportunities to test new drug candidates for disease modification in patients suffering from diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada , Animales , Humanos
9.
Trends Pharmacol Sci ; 40(9): 684-695, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31377018

RESUMEN

Abnormally high levels of misfolded proteins in the endoplasmic reticulum (ER) lumen result in a stress state that contributes to the progression of several pathological conditions including diabetes, cancer, neurodegeneration, and immune dysregulation. ER stress triggers a dynamic signaling pathway known as the unfolded protein response (UPR). The UPR enforces adaptive or cell death programs by integrating information about the intensity and duration of the stress stimuli. Thus, depending on the disease context, ER stress signaling can be beneficial or detrimental. We discuss current efforts to develop small molecules to target distinct components of the UPR, and their possible applications in treating human disease, focusing on neurodegenerative diseases, metabolic disorders, and cancer.


Asunto(s)
Retículo Endoplásmico/efectos de los fármacos , Enfermedades Metabólicas/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Retículo Endoplásmico/metabolismo , Humanos , Enfermedades Metabólicas/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteostasis/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Proc Natl Acad Sci U S A ; 116(23): 11291-11298, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31101715

RESUMEN

Diverse perturbations to endoplasmic reticulum (ER) functions compromise the proper folding and structural maturation of secretory proteins. To study secretory pathway physiology during such "ER stress," we employed an ER-targeted, redox-responsive, green fluorescent protein-eroGFP-that reports on ambient changes in oxidizing potential. Here we find that diverse ER stress regimes cause properly folded, ER-resident eroGFP (and other ER luminal proteins) to "reflux" back to the reducing environment of the cytosol as intact, folded proteins. By utilizing eroGFP in a comprehensive genetic screen in Saccharomyces cerevisiae, we show that ER protein reflux during ER stress requires specific chaperones and cochaperones residing in both the ER and the cytosol. Chaperone-mediated ER protein reflux does not require E3 ligase activity, and proceeds even more vigorously when these ER-associated degradation (ERAD) factors are crippled, suggesting that reflux may work in parallel with ERAD. In summary, chaperone-mediated ER protein reflux may be a conserved protein quality control process that evolved to maintain secretory pathway homeostasis during ER protein-folding stress.


Asunto(s)
Citosol/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Homeostasis/fisiología , Oxidación-Reducción , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
PLoS One ; 14(1): e0209824, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625178

RESUMEN

Endoplasmic reticulum stress (ER stress) has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a disease of progressive fibrosis and respiratory failure. ER stress activates a signaling pathway called the unfolded protein response (UPR) that either restores homeostasis or promotes apoptosis. The bifunctional kinase/RNase IRE1α is a UPR sensor/effector that promotes apoptosis if ER stress remains high and irremediable (i.e., a "terminal" UPR). Using multiple small molecule inhibitors against IRE1α, we show that ER stress-induced apoptosis of murine alveolar epithelial cells can be mitigated in vitro. In vivo, we show that bleomycin exposure to murine lungs causes early ER stress to activate IRE1α and the terminal UPR prior to development of pulmonary fibrosis. Small-molecule IRE1α kinase-inhibiting RNase attenuators (KIRAs) that we developed were used to evaluate the contribution of IRE1α activation to bleomycin-induced pulmonary fibrosis. One such KIRA-KIRA7-provided systemically to mice at the time of bleomycin exposure decreases terminal UPR signaling and prevents lung fibrosis. Administration of KIRA7 14 days after bleomycin exposure even promoted the reversal of established fibrosis. Finally, we show that KIRA8, a nanomolar-potent, monoselective KIRA compound derived from a completely different scaffold than KIRA7, likewise promoted reversal of established fibrosis. These results demonstrate that IRE1α may be a promising target in pulmonary fibrosis and that kinase inhibitors of IRE1α may eventually be developed into efficacious anti-fibrotic drugs.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Endorribonucleasas/antagonistas & inhibidores , Fibrosis/tratamiento farmacológico , Pulmón/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibrosis/metabolismo , Fibrosis/patología , Pulmón/metabolismo , Pulmón/patología , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Respuesta de Proteína Desplegada/efectos de los fármacos
12.
Mol Cell ; 69(2): 169-181, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29107536

RESUMEN

The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases.


Asunto(s)
Linaje de la Célula/fisiología , Respuesta de Proteína Desplegada/fisiología , Factor de Transcripción Activador 6/metabolismo , Animales , Apoptosis , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Homeostasis , Humanos , Modelos Biológicos , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Vías Secretoras/fisiología , Transducción de Señal , eIF-2 Quinasa/metabolismo
14.
Cell Metab ; 25(4): 883-897.e8, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28380378

RESUMEN

In cells experiencing unrelieved endoplasmic reticulum (ER) stress, the ER transmembrane kinase/endoribonuclease (RNase)-IRE1α-endonucleolytically degrades ER-localized mRNAs to promote apoptosis. Here we find that the ABL family of tyrosine kinases rheostatically enhances IRE1α's enzymatic activities, thereby potentiating ER stress-induced apoptosis. During ER stress, cytosolic ABL kinases localize to the ER membrane, where they bind, scaffold, and hyperactivate IRE1α's RNase. Imatinib-an anti-cancer tyrosine kinase inhibitor-antagonizes the ABL-IRE1α interaction, blunts IRE1α RNase hyperactivity, reduces pancreatic ß cell apoptosis, and reverses type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse model. A mono-selective kinase inhibitor that allosterically attenuates IRE1α's RNase-KIRA8-also efficaciously reverses established diabetes in NOD mice by sparing ß cells and preserving their physiological function. Our data support a model wherein ER-stressed ß cells contribute to their own demise during T1D pathogenesis and implicate the ABL-IRE1α axis as a drug target for the treatment of an autoimmune disease.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 1/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Mesilato de Imatinib/farmacología , Masculino , Ratones Endogámicos NOD , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Pirimidinas/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
15.
PLoS Pathog ; 12(5): e1005628, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27191388

RESUMEN

[This corrects the article DOI: 10.1371/journal.ppat.1003576.].

16.
ACS Chem Biol ; 11(8): 2195-205, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27227314

RESUMEN

The accumulation of unfolded proteins under endoplasmic reticulum (ER) stress leads to the activation of the multidomain protein sensor IRE1α as part of the unfolded protein response (UPR). Clustering of IRE1α lumenal domains in the presence of unfolded proteins promotes kinase trans-autophosphorylation in the cytosol and subsequent RNase domain activation. Interestingly, there is an allosteric relationship between the kinase and RNase domains of IRE1α, which allows ATP-competitive inhibitors to modulate the activity of the RNase domain. Here, we use kinase inhibitors to study how ATP-binding site conformation affects the activity of the RNase domain of IRE1α. We find that diverse ATP-competitive inhibitors of IRE1α promote dimerization and activation of RNase activity despite blocking kinase autophosphorylation. In contrast, a subset of ATP-competitive ligands, which we call KIRAs, allosterically inactivate the RNase domain through the kinase domain by stabilizing monomeric IRE1α. Further insight into how ATP-competitive inhibitors are able to divergently modulate the RNase domain through the kinase domain was gained by obtaining the first structure of apo human IRE1α in the RNase active back-to-back dimer conformation. Comparison of this structure with other existing structures of IRE1α and integration of our extensive structure activity relationship (SAR) data has led us to formulate a model to rationalize how ATP-binding site ligands are able to control the IRE1α oligomeric state and subsequent RNase domain activity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación Alostérica , Unión Competitiva , Estrés del Retículo Endoplásmico , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/química , Humanos , Ligandos , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Ribonucleasas/antagonistas & inhibidores , Relación Estructura-Actividad
17.
Nat Genet ; 47(6): 654-60, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25894502

RESUMEN

Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4(+) T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.


Asunto(s)
Artritis/genética , Enfermedades Autoinmunes/genética , Proteína Coatómero/genética , Aparato de Golgi/metabolismo , Enfermedades Pulmonares Intersticiales/genética , Secuencia de Aminoácidos , Preescolar , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Lactante , Escala de Lod , Masculino , Datos de Secuencia Molecular , Linaje , Transporte de Proteínas
18.
Annu Rev Pathol ; 10: 173-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25387057

RESUMEN

Numerous genetic and environmental insults impede the ability of cells to properly fold and posttranslationally modify secretory and transmembrane proteins in the endoplasmic reticulum (ER), leading to a buildup of misfolded proteins in this organelle--a condition called ER stress. ER-stressed cells must rapidly restore protein-folding capacity to match protein-folding demand if they are to survive. In the presence of high levels of misfolded proteins in the ER, an intracellular signaling pathway called the unfolded protein response (UPR) induces a set of transcriptional and translational events that restore ER homeostasis. However, if ER stress persists chronically at high levels, a terminal UPR program ensures that cells commit to self-destruction. Chronic ER stress and defects in UPR signaling are emerging as key contributors to a growing list of human diseases, including diabetes, neurodegeneration, and cancer. Hence, there is much interest in targeting components of the UPR as a therapeutic strategy to combat these ER stress-associated pathologies.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/patología , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Respuesta de Proteína Desplegada
19.
Nat Chem Biol ; 10(11): 892-901, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25325700

RESUMEN

The inability of cells to properly fold, modify and assemble secretory and transmembrane proteins leads to accumulation of misfolded proteins in the endoplasmic reticulum (ER). Under these conditions of 'ER stress', cell survival depends on homeostatic benefits from an intracellular signaling pathway called the unfolded protein response (UPR). When activated, the UPR induces transcriptional and translational programs that restore ER homeostasis. However, under high-level or chronic ER stress, these adaptive changes ultimately become overshadowed by alternative 'terminal UPR' signals that actively commit cells to degeneration, culminating in programmed cell death. Chronic ER stress and maladaptive UPR signaling are implicated in the etiology and pathogenesis of myriad human diseases. Naturally, this has generated widespread interest in targeting key nodal components of the UPR as therapeutic strategies. Here we summarize the state of this field with emphasis placed on two of the master UPR regulators, PERK and IRE1, which are both capable of being drugged with small molecules.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Animales , Retículo Endoplásmico/química , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/enzimología , Estrés del Retículo Endoplásmico , Homeostasis , Humanos , Transducción de Señal , eIF-2 Quinasa/genética
20.
Cell ; 158(3): 534-48, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25018104

RESUMEN

Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators-KIRAs-that allosterically inhibit IRE1α's RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic ß cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.


Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Regulación Alostérica , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Retina/metabolismo , Ribonucleasas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...