RESUMEN
Magnetic resonance image-guided focused ultrasound has emerged as a viable non-invasive technique for the treatment of central nervous system-related diseases/disorders. Application of mechanical and thermal effects associated with focused transcranial ultrasound has been studied extensively in pre-clinical models, which has paved the way for clinical trials. However, in vivo treatment evaluation techniques on drug delivery application via blood-brain barrier opening has not been fully explored. Current treatment evaluation techniques via magnetic resonance imaging are hindered by systemic toxicity resulting from free gadolinium delivery. Here we propose a novel treatment evaluation strategy to overcome limitations by (i) synthesizing liposomes that are dually labeled with gadolinium, a magnetic resonance imaging (MRI) contrast agent, and rhodamine, a fluorophore; (ii) applying a focused ultrasound (FUS)-mediated BBB opening technique to deliver the liposomes across vascular barriers, achieving local gadolinium enhancement while reducing systemic and unwanted regional toxic effects associated with free gadolinium; and (iii) utilizing the MRI modality to confirm the delivery as it is already included in the FUS treatment in clinic. Liposomes were secondarily labeled with a fluorescent marker to confirm results obtained by MRI quantification postmortem. Two different sizes, 77.5 nm (group A) and 140 nm (group B), of gadolinium- and fluorescence-labeled liposomes were fabricated using thin-film hydration followed by extrusion methods and determined their stability up to 6 h under physiologic conditions. Gadolinium signal was detected on contrast-enhanced T1-weighted MRI 5 h after the delivery of liposomes via the BBB opening approach with an ultrasound pulse of 0.42 MPa (estimate in water) combined with microbubbles. MRI contrast was enhanced significantly in sonicated regions compared with non-sonicated regions of the brain. This was due to the accumulation of labeled liposomes, which was confirmed by detection of rhodamine fluorescence in histologic sections. The relative increase in MRI signal intensity was greater for smaller liposomes (mean diameterâ¯=â¯77.5 nm) than larger liposomes (mean diameterâ¯=â¯140 nm), which suggested a greater accumulation of the smaller liposomes in the brain after ultrasound-mediated opening of the BBB. Our findings suggest that the dual-labeled nanocarrier platform can be established, the FUS-mediated BBB opening approach can be used to deliver it through vascular barriers and MRI can be used to evaluate the extent of nanocarrier delivery.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Gadolinio , Liposomas/metabolismo , Imagen por Resonancia Magnética/métodos , Rodaminas , Ultrasonografía/métodos , Animales , Sistemas de Liberación de Medicamentos/métodos , Liposomas/administración & dosificación , Masculino , Ratones , Modelos AnimalesRESUMEN
The blood-brain barrier (BBB) limits transport of nanoparticles from the circulation to the brain parenchyma. Angiopep-2, a peptide which functions as a brain transport vector, can be coupled to nanoparticles in order to facilitate binding and internalization by brain endothelial cells (ECs), and subsequent BBB penetration. This multi-step process may be affected by blood flow over brain ECs, as flow influences endothelial cell phenotype as well as interactions of nanoparticles with ECs. In the present study a microfluidic BBB model was constructed to evaluate binding and internalization by brain ECs, as well as BBB penetration of Angiopep-2 coupled liposomes (Ang2-Liposomes) in static and flow conditions. Ang2 conjugation to liposomes markedly improved binding relative to unconjugated liposomes. Ang2-Liposomes bound and were internalized efficiently by brain endothelial cells after static incubation or with 1 dyne/cm2 of fluid shear stress (FSS), while binding was reduced at a FSS of 6 dyne/cm2. Penetration of the model microfluidic BBB by Ang2-Liposomes was higher at a FSS of 1 dyne/cm2 and 6 dyne/cm2 than with static incubation. Analysis of barrier function and control experiments for receptor-mediated penetration provided insight into the magnitude of transcellular versus paracellular transport at each tested FSS. Overall, the results demonstrate that flow impacted the binding and BBB penetration of Ang2-functionalized nanoparticles. This highlights the relevance of the local flow environment for in vitro modeling of the performance of nanoparticles functionalized with BBB penetrating ligands.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Liposomas/metabolismo , Nanopartículas/metabolismo , Péptidos/metabolismo , Animales , Velocidad del Flujo Sanguíneo , Permeabilidad Capilar/fisiología , Línea Celular , Microambiente Celular , Sistemas de Liberación de Medicamentos , Ratones , Microfluídica , Estrés MecánicoRESUMEN
Thermal ablation of solid tumors via focused ultrasound (FUS) is a non-invasive image-guided alternative to conventional surgical resection. However, the usefulness of the technique is limited in vascularized organs because of convection of heat, resulting in long sonication times and unpredictable thermal lesion formation. Acoustic cavitation has been found to enhance heating but requires use of exogenous nuclei and sufficient acoustic monitoring. In this study, we employed phase-shift nanoemulsions (PSNEs) to promote cavitation and incorporated passive acoustic mapping (PAM) alongside conventional magnetic resonance imaging (MRI) thermometry within the bore of a clinical MRI scanner. Simultaneous PAM and MRI thermometry were performed in an in vivo rabbit tumor model, with and without PSNE to promote cavitation. Vaporization and cavitation of the nanoemulsion could be detected using PAM, which led to accelerated heating, monitored with MRI thermometry. The maximum heating assessed from MRI was well correlated with the integrated acoustic emissions, illustrating cavitation-enhanced heating. Examination of tissue revealed thermal lesions that were larger in the presence of PSNE, in agreement with the thermometry data. Using fixed exposure conditions over 94 sonications in multiple animals revealed an increase in the mean amplitude of acoustic emissions and resulting temperature rise, but with significant variability between sonications, further illustrating the need for real-time monitoring. The results indicate the utility of combined PAM and MRI for monitoring of tumor ablation and provide further evidence for the ability of PSNEs to promote cavitation-enhanced lesioning.
Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/cirugía , Termometría/métodos , Animales , Modelos Animales de Enfermedad , Masculino , ConejosRESUMEN
Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.
Asunto(s)
Acústica , Emulsiones , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Nanotecnología/métodos , Fantasmas de Imagen , Termometría/métodos , Humanos , Espectroscopía de Resonancia Magnética , VolatilizaciónRESUMEN
Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.
Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Oncología Médica/tendencias , Animales , Barrera Hematoencefálica/metabolismo , Química Farmacéutica , Sistemas de Liberación de Medicamentos , HumanosRESUMEN
Designing of drug nanocarriers to aid delivery of therapeutics is an expanding field that can improve medical treatments. Nanocarriers are often functionalized with elements that recognize cell-surface molecules involved in subcellular transport to improve targeting and endocytosis of therapeutics. Combination-targeting using several affinity elements further modulates this outcome. The most studied example is endothelial targeting via multiple cell adhesion molecules (CAMs), which mimics the strategy of leukocytes to adhere and traverse the vascular endothelium. Yet, the implications of this strategy on intracellular transport and in vivo biodistribution remain uncharacterized. We examined this using nanocarriers functionalized for dual- or triple-targeting to intercellular, platelet-endothelial, and/or vascular CAMs (ICAM-1, PECAM-1, VCAM-1). These molecules differ in expression level, location, pathological stimulation, and/or endocytic pathway. In endothelial cells, binding of PECAM-1/VCAM-1-targeted nanocarriers was intermediate to single-targeted counterparts and enhanced in disease-like conditions. ICAM-1/PECAM-1-targeted nanocarriers surpassed PECAM-1/VCAM-1 in control, but showed lower selectivity toward disease-like conditions. Triple-targeting resulted in binding similar to ICAM-1/PECAM-1 combination and displayed the highest selectivity in disease-like conditions. All combinations were effectively internalized by the cells, with slightly better performance when targeting receptors of different endocytic pathways. In vivo, ICAM-1/PECAM-1-targeted nanocarriers outperformed PECAM-1/VCAM-1 in control and disease-like conditions, and triple-targeted counterparts slightly enhanced this outcome in some organs. As a result, delivery of a model therapeutic cargo (acid sphingomyelinase, deficient in Niemann-Pick disease A-B) was enhanced to all affected organs by triple-targeted nanocarriers, particularly in disease-like conditions. Therefore, multi-CAM targeting may aid the optimization of some therapeutic nanocarriers, where the combination and multiplicity of the affinity moieties utilized allow modulation of targeting performance.
Asunto(s)
Portadores de Fármacos/metabolismo , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Nanopartículas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Línea Celular , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Endocitosis , Humanos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Nanopartículas/química , Distribución TisularRESUMEN
Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.
Asunto(s)
Portadores de Fármacos , Endocitosis/inmunología , Receptor IGF Tipo 2/química , Receptores de Transferrina/química , Actinas/química , Animales , Sitios de Unión , Caveolas/metabolismo , Membrana Celular/metabolismo , Supervivencia Celular , Ceramidas/química , Clatrina/química , Endosomas/química , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Poliestirenos/química , Esfingomielina Fosfodiesterasa/químicaRESUMEN
Modification of drug delivery nanomaterials with affinity molecules that facilitate targeting, has rendered a new class of ligands for cell receptors, which often possess valency and dimensions different from natural counterparts. Designing strategies to target multiple receptors or, never explored, multiple epitopes on the same receptor may modulate the biodistribution properties of these nanomaterials. We examined this using antibody-directed targeting of polymer nanocarriers to transferrin receptor (TfR) and intercellular adhesion molecule 1 (ICAM-1). Regarding epitopes on one receptor, nanocarriers addressed with anti-TfR-R17 maintained brain and lung targeting in mice, compared with "free" antibody, while anti-TfR-8D3 nanocarriers lost specificity. Coating nanocarriers with both antibodies decreased targeting in brain and liver, not lungs, modulating biodistribution. Regarding different receptors, nanocarriers coated with both anti-ICAM and anti-TfR displayed intermediate specific accumulation in lungs and higher in liver, compared to single-targeted nanocarriers, while brain targeting was comparable to TfR- and lower than ICAM-1-targeted nanocarriers. Tracing a model therapeutic cargo, acid sphingomyelinase (enzyme replacement for Niemann-Pick Disease A-B), showed that combined-targeted anti-ICAM/TfR nanocarriers enhanced enzyme delivery versus "free" enzyme, with biodistribution patterns different from single-targeted nanocarriers. Hence, targeting nanocarriers to multiple epitopes or receptors holds promise to control distribution of drug delivery nanomaterials in the body.