Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Blood ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691678

RESUMEN

Although NPM1-mutated acute myeloid leukemia (AML) carries a generally favorable prognosis, many patients still relapse and die. Previous studies identified several molecular and clinical features associated with poor outcome, however only FLT3-ITD mutation and adverse karyotype are currently used for risk stratification due to inconsistent results and uncertainty around how other factors should influence treatment, particularly given the strong prognostic impact of post-induction measurable residual disease (MRD). Here we analyzed a large group of patients with NPM1mut AML enrolled in prospective trials (NCRI AML17 and AML19, n=1357) to delineate the impact of baseline molecular and clinical features, post induction MRD status and treatment intensity on outcome. FLT3-ITD (HR 1.28, 95%CI 1.01-1.63), DNMT3A (HR 1.65, 95%CI 1.32-2.05), WT1 (HR 1.74, 95%CI 1272-2.38) and non-ABD NPM1 mutations (HR 1.64, 95%CI 1.22-2.21) were independently associated with poorer overall survival (OS). These factors were also strongly associated with MRD positivity. For patients achieving MRD negativity, these mutations (except FLT3-ITD) were associated with an increased cumulative incidence of relapse (CIR) and poorer OS. However, apart from the few patients with adverse cytogenetics, we could not identify any group of MRD negative patients with a CIR >40% or with benefit from allograft in first remission. Intensified chemotherapy with the FLAG-Ida regimen was associated with improved outcomes in all subgroups, with greater benefits observed in the highest risk molecular subgroups.

2.
J Intern Med ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654517

RESUMEN

BACKGROUND: The Molecular International Prognostic Scoring System (IPSS-M) is the new gold standard for diagnostic outcome prediction in patients with myelodysplastic syndromes (MDS). This study was designed to assess the additive prognostic impact of dynamic transfusion parameters during early follow-up. METHODS: We retrieved complete transfusion data from 677 adult Swedish MDS patients included in the IPSS-M cohort. Time-dependent erythrocyte transfusion dependency (E-TD) was added to IPSS-M features and analyzed regarding overall survival and leukemic transformation (acute myeloid leukemia). A multistate Markov model was applied to assess the prognostic value of early changes in transfusion patterns. RESULTS: Specific clinical and genetic features were predicted for diagnostic and time-dependent transfusion patterns. Importantly, transfusion state both at diagnosis and within the first year strongly predicts outcomes in both lower (LR) and higher-risk (HR) MDSs. In multivariable analysis, 8-month landmark E-TD predicted shorter survival independently of IPSS-M (p < 0.001). A predictive model based on IPSS-M and 8-month landmark E-TD performed significantly better than a model including only IPSS-M. Similar trends were observed in an independent validation cohort (n = 218). Early transfusion patterns impacted both future transfusion requirements and outcomes in a multistate Markov model. CONCLUSION: The transfusion requirement is a robust and available clinical parameter incorporating the effects of first-line management. In MDS, it provides dynamic risk information independently of diagnostic IPSS-M and, in particular, clinical guidance to LR MDS patients eligible for potentially curative therapeutic intervention.

3.
Mod Pathol ; 37(4): 100452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369186

RESUMEN

The molecular characterization of male breast cancer (MaBC) has received limited attention in research, mostly because of its low incidence rate, accounting for only 0.5% to 1% of all reported cases of breast cancer each year. Managing MaBC presents significant challenges, with most treatment protocols being adapted from those developed for female breast cancer. Utilizing whole-genome sequencing (WGS) and state-of-the-art analyses, the genomic features of 10 MaBC cases (n = 10) were delineated and correlated with clinical and histopathologic characteristics. Using fluorescence in situ hybridization, an additional cohort of 18 patients was interrogated to supplement WGS findings. The genomic landscape of MaBC uncovered significant genetic alterations that could influence diagnosis and treatment. We found common somatic mutations in key driver genes, such as FAT1, GATA3, SMARCA4, and ARID2. Our study also mapped out structural variants that impact cancer-associated genes, such as ARID1A, ESR1, GATA3, NTRK1, and NF1. Using a WGS-based classifier, homologous recombination deficiency (HRD) was identified in 2 cases, both presenting with deleterious variants in BRCA2. Noteworthy was the observation of FGFR1 amplification in 21% of cases. Altogether, we identified at least 1 potential therapeutic target in 8 of the 10 cases, including high tumor mutational burden, FGFR1 amplification, and HRD. Our study is the first WGS characterization of MaBC, which uncovered potentially relevant variants, including structural events in cancer genes, HRD signatures, and germline pathogenic mutations. Our results demonstrate unique genetic markers and potential treatment targets in MaBC, thereby underlining the necessity of tailoring treatment strategies for this understudied patient population. These WGS-based findings add to the growing knowledge of MaBC genomics and highlight the need to expand research on this type of cancer.


Asunto(s)
Neoplasias de la Mama Masculina , Neoplasias de la Mama , Humanos , Masculino , Femenino , Neoplasias de la Mama Masculina/genética , Neoplasias de la Mama Masculina/terapia , Hibridación Fluorescente in Situ , Mutación , Neoplasias de la Mama/patología , Oncogenes , Mutación de Línea Germinal , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
4.
Am J Surg Pathol ; 48(2): 183-193, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047392

RESUMEN

Several reports describing a rare primary liver tumor with histologic features reminiscent of follicular thyroid neoplasms have been published under a variety of descriptive terms including thyroid-like, solid tubulocystic, and cholangioblastic cholangiocarcinoma. Although these tumors are considered to represent histologic variants, they lack classic features of cholangiocarcinoma and have unique characteristics, namely immunoreactivity for inhibin and NIPBL::NACC1 fusions. The purpose of this study is to present clinicopathologic and molecular data for a large series of these tumors to better understand their pathogenesis. We identified 11 hepatic tumors with these features. Immunohistochemical and NACC1 and NIPBL fluorescence in situ hybridization assays were performed on all cases. Four cases had available material for whole-genome sequencing (WGS) analysis. Most patients were adult women (mean age: 42 y) who presented with abdominal pain and large hepatic masses (mean size: 14 cm). Ten patients had no known liver disease. Of the patients with follow-up information, 3/9 (33%) pursued aggressive behavior. All tumors were composed of bland cuboidal cells with follicular and solid/trabecular growth patterns in various combinations, were immunoreactive for inhibin, showed albumin mRNA by in situ hybridization, and harbored the NIPBL::NACC1 fusion by fluorescence in situ hybridization. WGS corroborated the presence of the fusion in all 4 tested cases, high tumor mutational burden in 2 cases, and over 30 structural variants per case in 3 sequenced tumors. The cases lacked mutations typical of conventional intrahepatic cholangiocarcinoma. In this report, we describe the largest series of primary inhibin-positive hepatic neoplasms harboring a NIPBL::NACC1 fusion and the first WGS analysis of these tumors. We propose to name this neoplasm NIPBL:NACC1 fusion hepatic carcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Adulto , Humanos , Femenino , Hibridación Fluorescente in Situ , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Neoplasias Hepáticas/patología , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología , Inhibinas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Proteínas de Ciclo Celular/genética , Proteínas de Neoplasias/genética , Proteínas Represoras/genética
5.
Lancet Haematol ; 11(1): e51-e61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38135373

RESUMEN

BACKGROUND: Somatic mutations are frequently reported in individuals with cytopenia but without a confirmed haematological diagnosis (clonal cytopenia of undetermined significance; CCUS). These patients have an increased risk of progression to a myeloid malignancy and worse overall survival than those with no such mutations. To date, studies have been limited by retrospective analysis or small patient numbers. We aimed to establish the natural history of CCUS by prospectively investigating outcome in a large, well defined patient cohort. METHODS: This prospective cohort study was conducted at the Haematological Malignancy Diagnostic Service, a diagnostic laboratory in Leeds, UK. Patients aged at least 18 years who were referred for investigation of cytopenia were eligible for inclusion; those with a history of myeloid malignancy were not eligible. Targeted sequencing was conducted alongside routine clinical testing. Baseline mutation analysis was then correlated with the main study outcomes: longitudinal blood counts, disease progression to a myeloid malignancy, and overall survival with a median follow-up of 4·54 years (IQR 4·03-5·04). Data were collected manually from hospital records or extracted from laboratory or clinical outcome databases. FINDINGS: Bone marrow samples from 2348 patients were received at the Haematological Malignancy Diagnostic Service between July 1, 2014, and July 31, 2016. Of these, 2083 patients (median age 72 years [IQR 63-80, range 18-99]; 854 [41·0%] female and 1229 [59·0%] male) met the inclusion criteria and had samples of sufficient quality for further analysis. 598 (28·7%) patients received a diagnosis on the basis of their biopsy sample, whereas 1485 (71·3%) samples were classified as non-diagnostic; of these, CCUS was confirmed in 400 (26·9%) patients (256 [64·0%] male and 144 [36·0%] female). TET2, SRSF2, and DNMT3A were the most frequently mutated genes in patients with CCUS, with 320 (80%) of 400 patients harbouring a mutation in at least one of these genes. Age (p<0·0001), sex (p=0·0027), and mutations in ASXL1 (p=0·0009), BCOR (p=0·0056), and TP53 (p=0·0055) correlated with a worse overall survival; however, the number of mutations was the strongest predictor for progression to a myeloid malignancy (two mutations, p=0·0024; three or more mutations, p=0·0004). Extended sequencing of samples from a subgroup of patients with sequential samples and no mutations in the initial myeloid gene panel showed recurrent mutations in both DDX41 and UBA1, suggesting that these genes should be included in clinical test panels. INTERPRETATION: Mutation analysis is advised in patients who have undergone bone marrow examination and have an otherwise-unexplained cytopenia. High-risk genetic mutations and increased numbers of mutations are predictive of both survival and progression within 5 years of presentation, warranting clinical surveillance and, when necessary, intervention. FUNDING: MDS Foundation.


Asunto(s)
Citopenia , Neoplasias Hematológicas , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Masculino , Femenino , Adolescente , Adulto , Anciano , Síndromes Mielodisplásicos/patología , Estudios Retrospectivos , Estudios Prospectivos , Mutación , Neoplasias Hematológicas/genética
6.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37812025

RESUMEN

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Osteosarcoma/genética , Secuenciación Completa del Genoma , Genómica , Neoplasias Óseas/genética , Recurrencia , Variaciones en el Número de Copia de ADN , Mutación
7.
JCO Precis Oncol ; 7: e2300070, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37561983

RESUMEN

PURPOSE: Clonal hematopoiesis (CH), the expansion of clones in the hematopoietic system, has been linked to different internal and external features such as aging, genetic ancestry, smoking, and oncologic treatment. However, the interplay between mutations in known cancer predisposition genes and CH has not been thoroughly examined in patients with solid tumors. METHODS: We used prospective tumor-blood paired sequencing data from 46,906 patients who underwent Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) testing to interrogate the associations between CH and rare pathogenic or likely pathogenic (P/LP) germline variants. RESULTS: We observed an enrichment of CH-positive patients among those carrying P/LP germline mutations and identified a significant association between P/LP germline variants in ATM and CH. Germline and CH comutation patterns in ATM, TP53, and CHEK2 suggested biallelic inactivation as a potential mediator of clonal expansion. Moreover, we observed that CH-PPM1D mutations, similar to somatic tumor-associated PPM1D mutations, were depleted in patients with P/LP germline mutations in the DNA damage response (DDR) genes ATM, CHEK2, and TP53. Patients with solid tumors and harboring P/LP germline mutations, CH mutations, and mosaicism chromosomal alterations might be at an increased risk of developing secondary leukemia while germline variants in TP53 were identified as an independent risk factor (hazard ratio, 36; P < .001) for secondary leukemias. CONCLUSION: Our results suggest a close relationship between inherited variants and CH mutations within the DDR genes in patients with solid tumors. Associations identified in this study might translate into enhanced clinical surveillance for CH and associated comorbidities in patients with cancer harboring these germline mutations.


Asunto(s)
Hematopoyesis Clonal , Neoplasias , Humanos , Estudios Prospectivos , Neoplasias/genética , Mutación/genética , Mutación de Línea Germinal/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-37652664

RESUMEN

Pilocytic astrocytomas are the most common pediatric brain tumors, typically presenting as low-grade neoplasms. We report two cases of pilocytic astrocytoma with atypical tumor progression. Case 1 involves a 12-yr-old boy with an unresectable suprasellar tumor, negative for BRAF rearrangement but harboring a BRAF p.V600E mutation. He experienced tumor size reduction and stable disease following dabrafenib treatment. Case 2 describes a 6-yr-old boy with a thalamic tumor that underwent multiple resections, with no actionable driver detected using targeted next-generation sequencing. Whole-genome and RNA-seq analysis identified an internal tandem duplication in FGFR1 and RAS pathway activation. Future management options include FGFR1 inhibitors. These cases demonstrate the importance of escalating molecular diagnostics for pediatric brain cancer, advocating for early reflexing to integrative whole-genome sequencing and transcriptomic profiling when targeted panels are uninformative. Identifying molecular drivers can significantly impact treatment decisions and improve patient outcomes.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Masculino , Niño , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Patología Molecular , Astrocitoma/diagnóstico , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Mutación
9.
Clin Cancer Res ; 29(20): 4256-4267, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37498312

RESUMEN

PURPOSE: Ring sideroblasts (RS) define the low-risk myelodysplastic neoplasm (MDS) subgroup with RS but may also reflect erythroid dysplasia in higher risk myeloid neoplasm. The benign behavior of MDS with RS (MDSRS+) is limited to SF3B1-mutated cases without additional high-risk genetic events, but one third of MDSRS+ carry no SF3B1 mutation, suggesting that different molecular mechanisms may underlie RS formation. We integrated genomic and transcriptomic analyses to evaluate whether transcriptome profiles may improve current risk stratification. EXPERIMENTAL DESIGN: We studied a prospective cohort of MDSRS+ patients irrespective of World Health Organization (WHO) class with regard to somatic mutations, copy-number alterations, and bone marrow CD34+ cell transcriptomes to assess whether transcriptome profiles add to prognostication and provide input on disease classification. RESULTS: SF3B1, SRSF2, or TP53 multihit mutations were found in 89% of MDSRS+ cases, and each mutation category was associated with distinct clinical outcome, gene expression, and alternative splicing profiles. Unsupervised clustering analysis identified three clusters with distinct hemopoietic stem and progenitor (HSPC) composition, which only partially overlapped with mutation groups. IPSS-M and the transcriptome-defined proportion of megakaryocyte/erythroid progenitors (MEP) independently predicted survival in multivariable analysis. CONCLUSIONS: These results provide essential input on the molecular basis of SF3B1-unmutated MDSRS+ and propose HSPC quantification as a prognostic marker in myeloid neoplasms with RS.


Asunto(s)
Genómica , Neoplasias , Humanos , Factores de Empalme de ARN/genética , Estudios Prospectivos , Medición de Riesgo , Perfilación de la Expresión Génica , Mutación , Fosfoproteínas/genética , Pronóstico
10.
Nature ; 618(7966): 681-683, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286674
11.
Nat Genet ; 55(6): 1022-1033, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169874

RESUMEN

Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.


Asunto(s)
Recurrencia Local de Neoplasia , Neuroblastoma , Humanos , Recurrencia Local de Neoplasia/genética , Neuroblastoma/genética , Evolución Clonal , Mutación , Metástasis de la Neoplasia
12.
Blood Adv ; 7(17): 5000-5013, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37142255

RESUMEN

Accurate classification and risk stratification are critical for clinical decision making in patients with acute myeloid leukemia (AML). In the newly proposed World Health Organization and International Consensus classifications of hematolymphoid neoplasms, the presence of myelodysplasia-related (MR) gene mutations is included as 1 of the diagnostic criteria for AML, AML-MR, based largely on the assumption that these mutations are specific for AML with an antecedent myelodysplastic syndrome. ICC also prioritizes MR gene mutations over ontogeny (as defined in the clinical history). Furthermore, European LeukemiaNet (ELN) 2022 stratifies these MR gene mutations into the adverse-risk group. By thoroughly annotating a cohort of 344 newly diagnosed patients with AML treated at the Memorial Sloan Kettering Cancer Center, we show that ontogeny assignments based on the database registry lack accuracy. MR gene mutations are frequently observed in de novo AML. Among the MR gene mutations, only EZH2 and SF3B1 were associated with an inferior outcome in the univariate analysis. In a multivariate analysis, AML ontogeny had independent prognostic values even after adjusting for age, treatment, allo-transplant and genomic classes or ELN risks. Ontogeny also helped stratify the outcome of AML with MR gene mutations. Finally, de novo AML with MR gene mutations did not show an adverse outcome. In summary, our study emphasizes the importance of accurate ontogeny designation in clinical studies, demonstrates the independent prognostic value of AML ontogeny, and questions the current classification and risk stratification of AML with MR gene mutations.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Pronóstico , Factores de Riesgo
13.
Blood Adv ; 7(15): 3862-3873, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-36867579

RESUMEN

Genomic profiling during the diagnosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults is used to guide disease classification, risk stratification, and treatment decisions. Patients for whom diagnostic screening fails to identify disease-defining or risk-stratifying lesions are classified as having B-other ALL. We screened a cohort of 652 BCP-ALL cases enrolled in UKALL14 to identify and perform whole genome sequencing (WGS) of paired tumor-normal samples. For 52 patients with B-other, we compared the WGS findings with data from clinical and research cytogenetics. WGS identified a cancer-associated event in 51 of 52 patients, including an established subtype defining genetic alterations that were previously missed with standard-of-care (SoC) genetics in 5 of them. Of the 47 true B-other ALL, we identified a recurrent driver in 87% (41). A complex karyotype via cytogenetics emerges as a heterogeneous group, including distinct genetic alterations associated with either favorable (DUX4-r) or poor outcomes (MEF2D-r and IGK::BCL2). For a subset of 31 cases, we integrated the findings from RNA sequencing (RNA-seq) analysis to include fusion gene detection and classification based on gene expression. Compared with RNA-seq, WGS was sufficient to detect and resolve recurrent genetic subtypes; however, RNA-seq can provide orthogonal validation of findings. In conclusion, we demonstrated that WGS can identify clinically relevant genetic abnormalities missed with SoC testing as well as identify leukemia driver events in virtually all cases of B-other ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Adulto , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Mutación , Secuenciación Completa del Genoma , Cariotipo Anormal
14.
Blood ; 141(19): 2359-2371, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36626250

RESUMEN

Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient's life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.


Asunto(s)
Antineoplásicos , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Neoplasias Primarias Secundarias , Humanos , Melfalán , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante Autólogo/efectos adversos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Neoplasias Primarias Secundarias/inducido químicamente , Neoplasias Primarias Secundarias/genética , Antineoplásicos/farmacología
15.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36711976

RESUMEN

Multiple large-scale tumor genomic profiling efforts have been undertaken in osteosarcoma, however, little is known about the spatial and temporal intratumor heterogeneity and how it may drive treatment resistance. We performed whole-genome sequencing of 37 tumor samples from eight patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. We identified subclonal copy number alterations in all but one patient. We observed that in five patients, a subclonal copy number clone from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clone in 6 out of 7 patients with more than one clone. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy number clones. Our study sheds light on intratumor heterogeneity and the potential drivers of treatment resistance in osteosarcoma.

16.
Blood Adv ; 7(6): 971-981, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36332058

RESUMEN

The genomic landscape of Waldenström macroglobulinemia (WM) is characterized by somatic mutations in MYD88, present from the precursor stages. Using the comprehensive resolution of whole genome sequencing (WGS) in 14 CD19-selected primary WM samples; comparing clonal and subclonal mutations revealed that germinal center (GC) mutational signatures SBS9 (poly-eta) and SBS84 (AID) have sustained activity, suggesting that the interaction between WM and the GC continues over time. Expanding our cohort size with 33 targeted sequencing samples, we interrogated the WM copy number aberration (CNA) landscape and chronology. Of interest, CNA prevalence progressively increased in symptomatic WM and relapsed disease when compared with stable precursor stages, with stable precursors lacking genomic complexity. Two MYD88 wild-type WGS contained a clonal gain affecting chromosome 12, which is typically an early event in chronic lymphocytic leukemia. Molecular time analysis demonstrated that both chromosomal 12 gain events occurred early in cancer development whereas other CNA changes tend to occur later in the disease course and are often subclonal. In summary, WGS analysis in WM allows the demonstration of sustained GC activity over time and allows the reconstruction of the temporal evolution of specific genomic features. In addition, our data suggest that, although MYD88-mutations are central to WM clone establishment and can be observed in precursor disease, CNA may contribute to later phases, and may be used as a biomarker for progression risk from precursor conditions to symptomatic disease.


Asunto(s)
Linfoma de Células B , Macroglobulinemia de Waldenström , Humanos , Macroglobulinemia de Waldenström/genética , Variaciones en el Número de Copia de ADN , Factor 88 de Diferenciación Mieloide/genética , Mutación , Linfoma de Células B/genética , Centro Germinal
17.
Am J Hematol ; 98(1): 79-89, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251406

RESUMEN

Measurable residual disease (MRD) is a powerful prognostic factor in acute myeloid leukemia (AML). However, pre-treatment molecular predictors of immunophenotypic MRD clearance remain unclear. We analyzed a dataset of 211 patients with pre-treatment next-generation sequencing who received induction chemotherapy and had MRD assessed by serial immunophenotypic monitoring after induction, subsequent therapy, and allogeneic stem cell transplant (allo-SCT). Induction chemotherapy led to MRD- remission, MRD+ remission, and persistent disease in 35%, 27%, and 38% of patients, respectively. With subsequent therapy, 34% of patients with MRD+ and 26% of patients with persistent disease converted to MRD-. Mutations in CEBPA, NRAS, KRAS, and NPM1 predicted high rates of MRD- remission, while mutations in TP53, SF3B1, ASXL1, and RUNX1 and karyotypic abnormalities including inv (3), monosomy 5 or 7 predicted low rates of MRD- remission. Patients with fewer individual clones were more likely to achieve MRD- remission. Among 132 patients who underwent allo-SCT, outcomes were favorable whether patients achieved early MRD- after induction or later MRD- after subsequent therapy prior to allo-SCT. As MRD conversion with chemotherapy prior to allo-SCT is rarely achieved in patients with specific baseline mutational patterns and high clone numbers, upfront inclusion of these patients into clinical trials should be considered.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Pronóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Trasplante de Células Madre , Inducción de Remisión , Trasplante Homólogo , Neoplasia Residual/genética
18.
Blood ; 141(11): 1316-1321, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36493342

RESUMEN

Myelodysplastic neoplasms (MDSs) and chronic myelomonocytic leukemia (CMML) are clonal disorders driven by progressively acquired somatic mutations in hematopoietic stem cells (HSCs). Hypomethylating agents (HMAs) can modify the clinical course of MDS and CMML. Clinical improvement does not require eradication of mutated cells and may be related to improved differentiation capacity of mutated HSCs. However, in patients with established disease it is unclear whether (1) HSCs with multiple mutations progress through differentiation with comparable frequency to their less mutated counterparts or (2) improvements in peripheral blood counts following HMA therapy are driven by residual wild-type HSCs or by clones with particular combinations of mutations. To address these questions, the somatic mutations of individual stem cells, progenitors (common myeloid progenitors, granulocyte monocyte progenitors, and megakaryocyte erythroid progenitors), and matched circulating hematopoietic cells (monocytes, neutrophils, and naïve B cells) in MDS and CMML were characterized via high-throughput single-cell genotyping, followed by bulk analysis in immature and mature cells before and after AZA treatment. The mutational burden was similar throughout differentiation, with even the most mutated stem and progenitor clones maintaining their capacity to differentiate to mature cell types in vivo. Increased contributions from productive mutant progenitors appear to underlie improved hematopoiesis in MDS following HMA therapy.


Asunto(s)
Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Humanos , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Células Madre Hematopoyéticas/metabolismo , Monocitos , Células Clonales
19.
Blood ; 140(21): 2228-2247, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36130297

RESUMEN

Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutación , Genómica , Neoplasias/genética , Neoplasias Hematológicas/genética , Toma de Decisiones Clínicas
20.
Nat Commun ; 13(1): 4622, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941135

RESUMEN

Clinical recommendations for Acute Myeloid Leukemia (AML) classification and risk-stratification remain heavily reliant on cytogenetic findings at diagnosis, which are present in <50% of patients. Using comprehensive molecular profiling data from 3,653 patients we characterize and validate 16 molecular classes describing 100% of AML patients. Each class represents diverse biological AML subgroups, and is associated with distinct clinical presentation, likelihood of response to induction chemotherapy, risk of relapse and death over time. Secondary AML-2, emerges as the second largest class (24%), associates with high-risk disease, poor prognosis irrespective of flow Minimal Residual Disease (MRD) negativity, and derives significant benefit from transplantation. Guided by class membership we derive a 3-tier risk-stratification score that re-stratifies 26% of patients as compared to standard of care. This results in a unified framework for disease classification and risk-stratification in AML that relies on information from cytogenetics and 32 genes. Last, we develop an open-access patient-tailored clinical decision support tool.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Análisis Citogenético , Citometría de Flujo/métodos , Quimioterapia de Inducción/métodos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Neoplasia Residual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA