Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(7): 1690-1701, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904265

RESUMEN

Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA sequencing data from the Oncology Research Information Exchange Network database of patients with colorectal cancer treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 colorectal cancer cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, in which tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-tropic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia gene expression scores seem to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes. SIGNIFICANCE: Tumor hypoxia reduces radiotherapy efficacy. In this study, we explored whether some of the clinical effects of hypoxia could be due to interaction with the tumor microbiome. Hypoxic gene expression scores associated with certain microbes and elicited an adaptive transcriptional response in others that could contribute to poor clinical outcomes.


Asunto(s)
Neoplasias Colorrectales , Ratones Endogámicos BALB C , Ratones Desnudos , Hipoxia Tumoral , Neoplasias Colorrectales/radioterapia , Neoplasias Colorrectales/microbiología , Animales , Ratones , Humanos , Hipoxia Tumoral/efectos de la radiación , Microbiota/efectos de la radiación , Línea Celular Tumoral , Femenino
2.
Semin Cancer Biol ; 100: 28-38, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556040

RESUMEN

Mitochondria are the major sink for oxygen in the cell, consuming it during ATP production. Therefore, when environmental oxygen levels drop in the tumor, significant adaptation is required. Mitochondrial activity is also a major producer of biosynthetic precursors and a regulator of cellular oxidative and reductive balance. Because of the complex biochemistry, mitochondrial adaptation to hypoxia occurs through multiple mechanisms and has significant impact on other cellular processes such as macromolecule synthesis and gene regulation. In tumor hypoxia, mitochondria shift their location in the cell and accelerate the fission and quality control pathways. Hypoxic mitochondria also undergo significant changes to fundamental metabolic pathways of carbon metabolism and electron transport. These metabolic changes further impact the nuclear epigenome because mitochondrial metabolites are used as enzymatic substrates for modifying chromatin. This coordinated response delivers physiological flexibility and increased tumor cell robustness during the environmental stress of low oxygen.


Asunto(s)
Hipoxia , Mitocondrias , Humanos , Mitocondrias/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Hipoxia de la Célula , Estrés Fisiológico , Adaptación Fisiológica
3.
Cell Metab ; 35(3): 381-383, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889278

RESUMEN

In this issue of Cell Metabolism, Midha et al. investigate the metabolic changes in mice after exposure to reduced oxygen tension for an acute or chronic duration. Their organ-specific findings may help explain physiological observations in humans living at high altitude but raise additional questions concerning pathological hypoxia after vascular damage or in cancer.


Asunto(s)
Altitud , Hipoxia , Humanos , Animales , Ratones , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo
4.
Br J Cancer ; 128(3): 407-412, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36344595

RESUMEN

Pivotal research led by Louis Harold Gray in the 1950s suggested that oxygen plays a vital role during radiotherapy. By proving that tumours have large necrotic cores due to hypoxia and that hypoxic cells require significantly larger doses of ionising radiation to achieve the same cell kill, Thomlinson and Gray inspired the subsequent decades of research into better defining the mechanistic role of molecular oxygen at the time of radiation. Ultimately, the work pioneered by Thomlinson and Gray led to numerous elegant studies which demonstrated that tumour hypoxia predicts for poor patient outcomes. Furthermore, this subsequently resulted in investigations into markers and measurement of hypoxia, as well as modification strategies. However, despite an abundance of pre-clinical data supporting hypoxia-targeted treatments, there is limited widespread application of hypoxia-targeted therapies routinely used in clinical practice. Significant contributing factors underpinning disappointing clinical trial results include the use of model systems which are more hypoxic than human tumours and a failure to stratify patients based on levels of hypoxia. However, translating the original findings of Thomlinson and Gray remains a research priority with the potential to significantly improve patient outcomes and specifically those receiving radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Neoplasias , Humanos , Hipoxia de la Célula , Neoplasias/tratamiento farmacológico , Hipoxia , Radiobiología , Oxígeno , Neoplasias Pulmonares/radioterapia
5.
Cancer Metab ; 10(1): 14, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192773

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, possesses characteristic alterations to multiple metabolic pathways, including the accumulation of cytosolic lipid droplets. However, the pathways that drive lipid droplet accumulation in ccRCC cells and their importance to cancer biology remain poorly understood. METHODS: We sought to identify the carbon sources necessary for lipid droplet accumulation using Oil red O staining and isotope-tracing lipidomics. The role of the acyl-CoA synthetase (ACSL) family members, an important group of lipid metabolic enzymes, was investigated using siRNA and drug mediated inhibition. CTB and XTT assays were performed to determine the effect of ACSL3 knockdown and lipid starvation on ccRCC cell viability and shRNA was used to study the effect of ACSL3 in an orthotopic mouse model. The relationship between ferroptosis susceptibility of ccRCC and ACSL3 controlled lipid metabolism was examined using CTB and FACS-based assays. The importance of 5-LOX in ferroptosis susceptibility in ccRCC was shown with XTT survival assays, and the expression level and predictive value of 5-LOX in TCGA ccRCC data was assessed. RESULTS: We found that ccRCC cells obtain the necessary substrates for lipid droplet accumulation by metabolizing exogenous serum derived lipids and not through de novo lipogenesis. We show that this metabolism of exogenous fatty acids into lipid droplets requires the enzyme acyl-CoA synthetase 3 (ACSL3) and not other ACSL family proteins. Importantly, genetic or pharmacologic suppression of ACSL3 is cytotoxic to ccRCC cells in vitro and causes a reduction of tumor weight in an orthotopic mouse model. Conversely, ACSL3 inhibition decreases the susceptibility of ccRCC cells to ferroptosis, a non-apoptotic form of cell death involving lipid peroxidation. The sensitivity of ccRCC to ferroptosis is also highly dependent on the composition of exogenous fatty acids and on 5-lipoxygenase (5-LOX), a leukotriene producing enzyme which produces lipid peroxides that have been implicated in other cancers but not in ccRCC. CONCLUSIONS: ACSL3 regulates the accumulation of lipid droplets in ccRCC and is essential for tumor growth. In addition, ACSL3 also modulates ferroptosis sensitivity in a manner dependent on the composition of exogenous fatty acids. Both functions of ACSL3 could be exploited for ccRCC therapy.

6.
Cancer Res ; 82(7): 1298-1312, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35045984

RESUMEN

Over 50% of all patients with cancer are treated with radiotherapy. However, radiotherapy is often insufficient as a monotherapy and requires a nontoxic radiosensitizer. Squalene epoxidase (SQLE) controls cholesterol biosynthesis by converting squalene to 2,3-oxidosqualene. Given that SQLE is frequently overexpressed in human cancer, this study investigated the importance of SQLE in breast cancer and non-small cell lung cancer (NSCLC), two cancers often treated with radiotherapy. SQLE-positive IHC staining was observed in 68% of breast cancer and 56% of NSCLC specimens versus 15% and 25% in normal breast and lung tissue, respectively. Importantly, SQLE expression was an independent predictor of poor prognosis, and pharmacologic inhibition of SQLE enhanced breast and lung cancer cell radiosensitivity. In addition, SQLE inhibition enhanced sensitivity to PARP inhibition. Inhibition of SQLE interrupted homologous recombination by suppressing ataxia-telangiectasia mutated (ATM) activity via the translational upregulation of wild-type p53-induced phosphatase (WIP1), regardless of the p53 status. SQLE inhibition and subsequent squalene accumulation promoted this upregulation by triggering the endoplasmic reticulum (ER) stress response. Collectively, these results identify a novel tumor-specific radiosensitizer by revealing unrecognized cross-talk between squalene metabolites, ER stress, and the DNA damage response. Although SQLE inhibitors have been used as antifungal agents in the clinic, they have not yet been used as antitumor agents. Repurposing existing SQLE-inhibiting drugs may provide new cancer treatments. SIGNIFICANCE: Squalene epoxidase inhibitors are novel tumor-specific radiosensitizers that promote ER stress and suppress homologous recombination, providing a new potential therapeutic approach to enhance radiotherapy efficacy.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Femenino , Recombinación Homóloga , Humanos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo
7.
Cancer Metab ; 9(1): 39, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749809

RESUMEN

BACKGROUND: Pyruvate dehydrogenase complex (PDC) plays a central role in carbohydrate metabolism, linking cytoplasmic glycolysis to the mitochondrial tricarboxylic acid (TCA) cycle. PDC is a conserved E1-E2-E3 dehydrogenase with a PDHA1 and PDHB heterotetramer functioning as the E1 subunit. PDHA1 contains three serine residues that can be reversibly phosphorylated by a dedicated family of four inhibitory pyruvate dehydrogenase kinases (PDHK1-4) and two reactivating phosphatases (PDP1, 2). Hypoxia induces the expression of PDHK1 and PDHK3 and hyperphosphorylates PDHA1. The role of PDC in metabolic reprogramming and tumor progression appears to be for the integration of oncogenic and environmental signals which supports tumor growth. METHODS: To isolate the function of the serine-dependent regulation of PDC, we engineered MiaPaca2 cells to express PDHA1 protein with either intact serines at positions 232, 293, and 300 or all the combinations of non-phosphorylatable alanine substitution mutations. These lines were compared in vitro for biochemical response to hypoxia by western blot, metabolic activity by biochemical assay and Seahorse XF flux analysis, and growth in media with reduced exogenous metabolites. The lines were also tested for growth in vivo after orthotopic injection into the pancreata of immune-deficient mice. RESULTS: In this family of cells with non-phosphorylatable PDHA1, we found reduced hypoxic phosphorylation of PDHA1, decreased PDH enzymatic activity in normoxia and hypoxia, decreased mitochondrial function by Seahorse flux assay, reduced in vitro growth of cells in media depleted of lipids, and reduced growth of tumors after orthotopic transplantation of cells into the pancreata of immune-deficient mice. CONCLUSIONS: We found that any substitution of alanine for serine at regulatory sites generated a hypomorphic PDC. However, the reduced PDC activity was insensitive to further reduction in hypoxia. These cells had a very modest reduction of growth in vitro, but failed to grow as tumors indicating that dynamic PDC adaptation to microenvironmental conditions is necessary to support pancreatic cancer growth in vivo.

8.
Anim Reprod Sci ; 230: 106779, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34048998

RESUMEN

Mitochondrial function is essential for sperm viability, not only from a sperm metabolism perspective, but also for improvement of sperm storage in liquid and frozen states. Bull sperm have notable metabolic variability with energy production for motility and subsequently for fertilizing capacity resulting from both glycolysis and oxidative phosphorylation. The objective of this study was to determine mitochondrial function of sperm using high-throughput Seahorse Analyzer technology in fresh semen and subsequent to freezing-thawing when there was incubation in media commonly used for sperm storage (relatively large glucose concentration) and female tract (relatively small glucose concentration). Additionally, there were determinations whether there were differences in values for fertility variables by regressing sire conception rate on values for mitochondrial variables when there was evaluation of semen from bulls with varying fertility. Media with larger concentrations of glucose inhibited mitochondrial function in fresh sperm, as indicated by less maximal oxygen consumption, spare respiratory capacity and coupling efficiency when compared to sperm in the media containing less glucose. Furthermore, there was greater (P <  0.05) mitochondrial function in cryopreserved-thawed compared to fresh samples with there being no effect of incubation media. These results indicate that mitochondrial damage from cryopreservation cannot be simply overcome post-thawing with glucose supplementation of bull semen incubation media. The increase in mitochondrial function is likely due to "non-productive" oxygen consumption to maintain the mitochondrial proton gradient. Furthermore, there was a negative association of mitochondrial proton leakage with sire conception rate indicating this could be a potential biomarker of bull fertility.


Asunto(s)
Bovinos , Criopreservación/veterinaria , Glucosa/farmacología , Preservación de Semen/veterinaria , Espermatozoides/efectos de los fármacos , Animales , Fertilidad , Glucosa/administración & dosificación , Masculino , Preservación de Semen/métodos , Motilidad Espermática , Espermatozoides/fisiología
9.
Cancers (Basel) ; 13(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916656

RESUMEN

BACKGROUND: Hypoxia is found in many solid tumors and is associated with increased disease aggressiveness and resistance to therapy. Reducing oxygen demand by targeting mitochondrial oxidative metabolism is an emerging concept in translational cancer research aimed at reducing hypoxia. We have shown that the U.S. Food and Drug Administration (FDA)-approved drug papaverine and its novel derivative SMV-32 are potent mitochondrial complex I inhibitors. METHODS: We used a dynamic in vivo luciferase reporter system, pODD-Luc, to evaluate the impact of pharmacological manipulation of mitochondrial metabolism on the levels of tumor hypoxia in transplanted mouse tumors. We also imaged canine patients with blood oxygen level-dependent (BOLD) MRI at baseline and one hour after a dose of 1 or 2 mg/kg papaverine. RESULTS: We showed that the pharmacological suppression of mitochondrial oxygen consumption (OCR) in tumor-bearing mice increases tumor oxygenation, while the stimulation of mitochondrial OCR decreases tumor oxygenation. In parallel experiments in a small series of spontaneous canine sarcomas treated at The Ohio State University (OSU) Veterinary Medical Center, we observed a significant increase in BOLD signals indicative of an increase in tumor oxygenation of up to 10-50 mm HgO2. CONCLUSION: In both transplanted murine tumors and spontaneous canine tumors we found that decreasing mitochondrial metabolism can decrease tumor hypoxia, potentially offering a therapeutic advantage.

10.
Oncol Rep ; 45(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33649859

RESUMEN

Hypoxia Inducible Lipid Droplet Associated (HILPDA) is frequently overexpressed in tumors and promotes neutral lipid storage. The impact of Hilpda on pancreatic ductal adenocarcinoma (PDAC) tumor growth is not known. In order to evaluate Hilpda­dependent lipid storage mechanisms, expression of Hilpda in murine pancreatic cells (KPC) was genetically manipulated. Lipid droplet (LD) abundance and triglyceride content in vitro were measured, and model tumor growth in nu/nu mice was determined. The results showed that excess lipid supply increased triglyceride storage and LD formation in KPC cells in a HILPDA­dependent manner. Contrary to published results, inhibition of Adipose Triglyceride Lipase (ATGL) did not ameliorate the triglyceride abundance differences between Hilpda WT and KO cells. Hilpda ablation significantly decreased the growth rate of model tumors in immunocompromised mice. In conclusion, Hilpda is a positive regulator of triglyceride storage and lipid droplet formation in murine pancreatic cancer cells in vitro and lipid accumulation and tumor growth in vivo. Our data suggest that deregulated ATGL is not responsible for the absence of LDs in KO cells in this context.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Procesos de Crecimiento Celular/fisiología , Metabolismo de los Lípidos , Ratones , Neoplasias Pancreáticas/patología
11.
Front Oncol ; 10: 1462, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983978

RESUMEN

Tumor hypoxia represents a severe microenvironmental stress that is frequently associated with acidosis. Cancer cells respond to these stresses with changes in gene expression that promote survival at least in part through pH regulation and metabolic reprogramming. Hypoxia-induced carbonic anhydrase IX (CA IX) plays a critical adaptive role in response to hypoxic and acidic environments by catalytically hydrating extracellular CO2 to produce bicarbonate for buffering intracellular pH (pHi). We used proteome-wide profiling to study the cellular response to transient CA IX knockdown in hypoxia and found a decrease in the levels of key glycolytic enzymes and lactate dehydrogenase A (LDHA). Interestingly, the activity of LDH was also decreased as demonstrated by native in-gel activity assay. These changes led to a significant reduction in glycolytic flux and extracellular lactate levels in cancer cells in vitro, contributing to a decrease in proliferation. Interestingly, addition of the alternative LDH substrate alpha-ketobutyrate restored LDHA activity, extracellular acidification, pHi, and cellular proliferation. These results indicate that in the absence of CA IX, reduction of pHi disrupts LDHA activity and hinders the cellular capacity to regenerate NAD+ and secrete protons to the extracellular space. Hypoxia-induced CA IX therefore mediates adaptation to microenvironmental hypoxia and acidosis directly, by enzymatically converting extracellular CO2 to bicarbonate, and indirectly, by maintaining glycolysis-permissive intracellular milieu.

12.
Br J Radiol ; 93(1115): 20200067, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32462882

RESUMEN

Cancer-specific metabolic changes support the anabolic needs of the rapidly growing tumor, maintain a favorable redox balance, and help cells adapt to microenvironmental stresses like hypoxia and nutrient deprivation. Radiation is extensively applied in a large number of cancer treatment protocols but despite its curative potential, radiation resistance and treatment failures pose a serious problem. Metabolic control of DNA integrity and genomic stability can occur through multiple processes, encompassing cell cycle regulation, nucleotide synthesis, epigenetic regulation of gene activity, and antioxidant defenses. Given the important role of metabolic pathways in oxidative damage responses, it is necessary to assess the potential for tumor-specific radiosensitization by novel metabolism-targeted therapies. Additionally, there are opportunities to identify molecular and functional biomarkers of vulnerabilities to combination treatments, which could then inform clinical decisions. Here, we present a curated list of metabolic pathways in the context of ionizing radiation responses. Glutamine metabolism influences DNA damage responses by mechanisms such as synthesis of nucleotides for DNA repair or of glutathione for ROS detoxification. Repurposed oxygen consumption inhibitors have shown promising radiosensitizing activity against murine model tumors and are now in clinical trials. Production of 2-hydroxy glutarate by isocitrate dehydrogenase1/2 neomorphic oncogenic mutants interferes with the function of α-ketoglutarate-dependent enzymes and modulates Ataxia Telangiectasia Mutated (ATM) signaling and glutathione pools. Radiation-induced oxidative damage to membrane phospholipids promotes ferroptotic cell loss and cooperates with immunotherapies to improve tumor control. In summary, there are opportunities to enhance the efficacy of radiotherapy by exploiting cell-inherent vulnerabilities and dynamic microenvironmental components of the tumor.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/radioterapia , Tolerancia a Radiación/fisiología , Adaptación Fisiológica , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/fisiología , Daño del ADN/fisiología , Reparación del ADN/fisiología , Inestabilidad Genómica , Glutamina/metabolismo , Glutaratos/metabolismo , Glutatión/metabolismo , Humanos , Inmunoterapia , Isocitrato Deshidrogenasa/genética , Ácidos Cetoglutáricos/metabolismo , Peroxidación de Lípido , Ratones , Neoplasias/terapia , Nucleótidos/biosíntesis , Consumo de Oxígeno/efectos de los fármacos , Fosfolípidos/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Resultado del Tratamiento , Microambiente Tumoral/fisiología
13.
Mol Cancer Res ; 17(10): 2089-2101, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31308147

RESUMEN

Accumulation of lipid droplets has been observed in an increasing range of tumors. However, the molecular determinants of this phenotype and the impact of the tumor microenvironment on lipid droplet dynamics are not well defined. The hypoxia-inducible and lipid droplet associated protein HILPDA is known to regulate lipid storage and physiologic responses to feeding conditions in mice, and was recently shown to promote hypoxic lipid droplet formation through inhibition of the rate-limiting lipase adipose triglyceride lipase (ATGL). Here, we identify fatty acid loading and nutrient deprivation-induced autophagy as stimuli of HILPDA-dependent lipid droplet growth. Using mouse embryonic fibroblasts and human tumor cells, we found that genetic ablation of HILPDA compromised hypoxia-fatty acid- and starvation-induced lipid droplet formation and triglyceride storage. Nutrient deprivation upregulated HILPDA protein posttranscriptionally by a mechanism requiring autophagic flux and lipid droplet turnover, independent of HIF1 transactivation. Mechanistically, loss of HILPDA led to elevated lipolysis, which could be corrected by inhibition of ATGL. Lipidomic analysis revealed not only quantitative but also qualitative differences in the glycerolipid and phospholipid profile of HILPDA wild-type and knockout cells, indicating additional HILPDA functions affecting lipid metabolism. Deletion studies of HILPDA mutants identified the N-terminal hydrophobic domain as sufficient for targeting to lipid droplets and restoration of triglyceride storage. In vivo, HILPDA-ablated cells showed decreased intratumoral triglyceride levels and impaired xenograft tumor growth associated with elevated levels of apoptosis. IMPLICATIONS: Tumor microenvironmental stresses induce changes in lipid droplet dynamics via HILPDA. Regulation of triglyceride hydrolysis is crucial for cell homeostasis and tumor growth.


Asunto(s)
Gotas Lipídicas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animales , Femenino , Células HCT116 , Xenoinjertos , Humanos , Lipasa/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Ratones Desnudos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Microambiente Tumoral , Regulación hacia Arriba
14.
Int J Cancer ; 144(4): 674-686, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30121950

RESUMEN

During malignant progression cancer cells undergo a series of changes, which promote their survival, invasiveness and metastatic process. One of them is a change in glucose metabolism. Unlike normal cells, which mostly rely on the tricarboxylic acid cycle (TCA), many cancer types rely on glycolysis. Pyruvate dehydrogenase complex (PDC) is the gatekeeper enzyme between these two pathways and is responsible for converting pyruvate to acetyl-CoA, which can then be processed further in the TCA cycle. Its activity is regulated by PDP (pyruvate dehydrogenase phosphatases) and PDHK (pyruvate dehydrogenase kinases). Pyruvate dehydrogenase kinase exists in 4 tissue specific isoforms (PDHK1-4), the activities of which are regulated by different factors, including hormones, hypoxia and nutrients. PDHK1 and PDHK3 are active in the hypoxic tumor microenvironment and inhibit PDC, resulting in a decrease of mitochondrial function and activation of the glycolytic pathway. High PDHK1/3 expression is associated with worse prognosis in patients, which makes them a promising target for cancer therapy. However, a better understanding of PDC's enzymatic regulation in vivo and of the mechanisms of PDHK-mediated malignant progression is necessary for the design of better PDHK inhibitors and the selection of patients most likely to benefit from such inhibitors.


Asunto(s)
Glucosa/metabolismo , Neoplasias/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Microambiente Tumoral , Animales , Metabolismo de los Hidratos de Carbono , Ciclo del Ácido Cítrico , Humanos , Modelos Biológicos , Neoplasias/patología , Neoplasias/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
15.
Proc Natl Acad Sci U S A ; 115(42): 10756-10761, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30201710

RESUMEN

Tumor hypoxia reduces the effectiveness of radiation therapy by limiting the biologically effective dose. An acute increase in tumor oxygenation before radiation treatment should therefore significantly improve the tumor cell kill after radiation. Efforts to increase oxygen delivery to the tumor have not shown positive clinical results. Here we show that targeting mitochondrial respiration results in a significant reduction of the tumor cells' demand for oxygen, leading to increased tumor oxygenation and radiation response. We identified an activity of the FDA-approved drug papaverine as an inhibitor of mitochondrial complex I. We also provide genetic evidence that papaverine's complex I inhibition is directly responsible for increased oxygenation and enhanced radiation response. Furthermore, we describe derivatives of papaverine that have the potential to become clinical radiosensitizers with potentially fewer side effects. Importantly, this radiosensitizing strategy will not sensitize well-oxygenated normal tissue, thereby increasing the therapeutic index of radiotherapy.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Neoplasias Pulmonares/radioterapia , Mitocondrias/efectos de los fármacos , NADH Deshidrogenasa/antagonistas & inhibidores , Oxígeno/metabolismo , Papaverina/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Sistemas CRISPR-Cas , Hipoxia de la Célula/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Complejo I de Transporte de Electrón , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , NADH Deshidrogenasa/genética , Inhibidores de Fosfodiesterasa/farmacología , Tolerancia a Radiación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Endocrinol ; 235(1): 27-38, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28739822

RESUMEN

Hypoxia-inducible lipid droplet-associated protein (HILPDA) has been shown to localize to lipid droplets in nutrient-responsive cell types such as hepatocytes and adipocytes. However, its role in the control of whole-body homeostasis is not known. We sought to measure cell-intrinsic and systemic stress responses in a mouse strain harboring whole-body Hilpda deficiency. We generated a genetically engineered mouse model of whole-body HILPDA deficiency by replacing the coding Hilpda exon with luciferase. We subjected the knockout animals to environmental stresses and measured whole-animal metabolic and behavioral parameters. Brown adipocyte precursors were isolated and differentiated in vitro to quantify the impact of HILPDA ablation in lipid storage and mobilization in these cells. HILPDA-knockout animals are viable and fertile, but show reduced ambulatory activity and oxygen consumption at regular housing conditions. Acclimatization at thermoneutral conditions abolished the phenotypic differences observed at 22°C. When fasted, HILPDA KO mice are unable to maintain body temperature and become hypothermic at 22°C, without apparent abnormalities in blood chemistry parameters or tissue triglyceride content. HILPDA expression was upregulated during adipocyte differentiation and activation in vitro; however, it was not required for lipid droplet formation in brown adipocytes. We conclude that HILPDA is necessary for efficient fuel utilization suggesting a homeostatic role for Hilpda in sub-optimal environments.


Asunto(s)
Regulación de la Temperatura Corporal , Proteínas de Unión al ADN/metabolismo , Ayuno/fisiología , Adipocitos/metabolismo , Animales , Proteínas de Unión al ADN/genética , Femenino , Ratones , Ratones Noqueados , Estrés Fisiológico , Triglicéridos/metabolismo
17.
Sci Rep ; 6: 31146, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27498883

RESUMEN

Tumour cells fulfil the bioenergetic and biosynthetic needs of proliferation using the available environmental metabolites. Metabolic adaptation to hypoxia causes decreased mitochondrial function and increased lactate production. This work examines the biological importance of the hypoxia-inducible inhibitory phosphorylations on the pyruvate dehydrogenase E1α subunit. Pancreatic cancer cell lines were genetically manipulated to alter the net phosphorylation of PDH E1α through reduced kinase expression or enhanced phosphatase expression. The modified cells were tested for hypoxic changes in phosphorylated E1α, mitochondrial metabolism and growth as xenografted tumours. Even though there are four PDHK genes, PDHK1 is essential for inhibitory PDH phosphorylation of E1α at serine 232, is partially responsible for modification of serines 293 and 300, and these phosphorylations are necessary for model tumour growth. In order to determine the clinical relevance, a cohort of head and neck cancer patient biopsies was examined for phosphorylated E1α and expression of PDHK1. Patients with detectable 232 phosphorylation or expression of PDHK1 tend to have worse clinical outcome. These data show that PDHK1 activity is unique and non-redundant in the family of PHDK enzymes and a PDHK1 specific inhibitor would therefore have anti-cancer activity with reduced chance of side effects from inhibition of other PDHKs.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/enzimología , Neoplasias Pancreáticas/enzimología , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/patología , Neoplasias Pancreáticas/patología
18.
Exp Cell Res ; 339(1): 147-53, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26477823

RESUMEN

BACKGROUND: Environmental conditions or chemical agents can interfere with the function of the endoplasmic reticulum, and the resulting endoplasmic reticulum (ER) stress can be toxic to the cell if it is not relieved. The classical compensatory response to ER stress is the unfolded protein response (UPR) that reduces protein load in the ER. However, autophagy may also compensate by removing large insoluble protein aggregates. Agents that stress the ER can have anti-cancer activity, and novel applications of ER stress inducing agents are being investigated. Plant stilbenes are a class of stress responsive molecules that includes resveratrol, which are being investigated as potential therapeutics in humans for conditions such as aging or cancer. RESULTS: We performed a screen of 1726 small, drug like molecules to identify those that could activate an ER-stress responsive luciferase gene. After secondary screening, we determined that the plant stilbenes pterostilbene and piceatannol were the most potent inducers of ER stress from this group. ER stress can be particularly toxic to cells with high ER load, so we examined their effect on cells expressing the Wnt family of secreted glycoprotein growth factors. Molecular analysis determined that these ER stress-inducing stilbenes could block Wnt processing and also induce autophagy in acute lymphoblastic leukemia cells expressing Wnt16. Combining pterostilbene (to induce ER stress) with chloroquine (to inhibit autophagy) lead to significant cellular toxicity in cells from aggressive acute lymphoblastic leukemia. CONCLUSIONS: Plant stilbenes are potent inducers of ER stress. However, their toxicity is more pronounced in cancer cells expressing Wnt growth factors. The toxicity of stilbenes in these ALL cells can be potentiated by the addition of autophagy inhibitors, suggesting a possible therapeutic application.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibrosarcoma/tratamiento farmacológico , Plantas/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Estilbenos/farmacología , Antimaláricos/farmacología , Antioxidantes/farmacología , Western Blotting , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Sinergismo Farmacológico , Quimioterapia Combinada , Fibrosarcoma/patología , Ensayos Analíticos de Alto Rendimiento , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Resveratrol , Bibliotecas de Moléculas Pequeñas/farmacología , Células Tumorales Cultivadas
19.
Anticancer Res ; 35(9): 4625-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26254351

RESUMEN

BACKGROUND: Previous work from our group showed hypoxia can induce endoplasmic reticulum (ER) stress and block the processing of the WNT3 protein in cells engineered to express WNT3a. Acute lymphoblastic leukemia (ALL) cells with the t(1:19) translocation express the WNT16 gene, which is thought to contribute to transformation. RESULTS: ER-stress blocks processing of endogenous WNT16 protein in RCH-ACV and 697 ALL cells. Biochemical analysis showed an aggregation of WNT16 proteins in the ER of stressed cells. These large protein masses cannot be completely cleared by ER-associated protein degradation, and require for additional autophagic responses. Pharmacological block of autophagy significantly increased cell death in ER-stressed ALL. Furthermore, murine cells engineered to express WNT16 are similarly sensitized. CONCLUSION: ALL cells expressing WNT16 are sensitive to ER stress, and show enhanced killing after addition of chloroquine. These findings suggest a potential clinical application of inducers of ER stress with inhibitors of autophagy in patients with high-risk ALL.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Wnt/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Proteolisis , Proteínas Wnt/genética
20.
J Biol Chem ; 289(33): 22850-22864, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24993821

RESUMEN

Rapid tumor growth can establish metabolically stressed microenvironments that activate 5'-AMP-activated protein kinase (AMPK), a ubiquitous regulator of ATP homeostasis. Previously, we investigated the importance of AMPK for the growth of experimental tumors prepared from HRAS-transformed mouse embryo fibroblasts and for primary brain tumor development in a rat model of neurocarcinogenesis. Here, we used triple-negative human breast cancer cells in which AMPK activity had been knocked down to investigate the contribution of AMPK to experimental tumor growth and core glucose metabolism. We found that AMPK supports the growth of fast-growing orthotopic tumors prepared from MDA-MB-231 and DU4475 breast cancer cells but had no effect on the proliferation or survival of these cells in culture. We used in vitro and in vivo metabolic profiling with [(13)C]glucose tracers to investigate the contribution of AMPK to core glucose metabolism in MDA-MB-231 cells, which have a Warburg metabolic phenotype; these experiments indicated that AMPK supports tumor glucose metabolism in part through positive regulation of glycolysis and the nonoxidative pentose phosphate cycle. We also found that AMPK activity in the MDA-MB-231 tumors could systemically perturb glucose homeostasis in sensitive normal tissues (liver and pancreas). Overall, our findings suggest that the contribution of AMPK to the growth of aggressive experimental tumors has a critical microenvironmental component that involves specific regulation of core glucose metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de la Mama/enzimología , Proteínas de Neoplasias/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Glucosa/genética , Glucosa/metabolismo , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Vía de Pentosa Fosfato/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...