Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(4): e0240321, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35856708

RESUMEN

Dicyandiamide (DCD) and nitrapyrin (NP) are nitrification inhibitors (NIs) used in agriculture for over 40 years. Recently, ethoxyquin (EQ) was proposed as a novel potential NI, acting through its derivative quinone imine (QI). Still, the specific activity of these NIs on the different groups of ammonia-oxidizing microorganisms (AOM), and mostly their effects on other soil microbiota remain unknown. We determined the impact of QI, and comparatively of DCD and NP, applied at two doses (regular versus high), on the function, diversity, and dynamics of target (AOM), functionally associated (nitrite-oxidizing bacteria-NOB), and off-target prokaryotic and fungal communities in two soils mainly differing in pH (5.4 versus 7.9). QI was equally effective to DCD but more effective than NP in inhibiting nitrification in the acidic soil, while in the alkaline soil QI was less efficient than DCD and NP. This was attributed to the higher activity of QI toward AOA prevailing in the acidic soil. All NIs induced significant effects on the composition of the AOB community in both soils, unlike AOA, which were less responsive. Beyond on-target effects, we noted an inhibitory effect of all NIs on the abundance of NOB in the alkaline soil, with Nitrobacter being more sensitive than Nitrospira. QI, unlike the other NIs, induced significant changes in the composition of the bacterial and fungal communities in both soils. Our findings have serious implications for the efficiency and future use of NIs on agriculture and provide unprecedented evidence for the potential off-target effects of NIs on soil microbiota. IMPORTANCE NIs could improve N use efficiency and decelerate N cycling. Still, we know little about their activity on the distinct AOM groups and about their effects on off-target soil microorganisms. Here, we studied the behavior of a new potent NI, QI, compared to established NIs. We show that (i) the variable efficacy of NIs across soils with different pH reflects differences in the inherent specific activity of the NIs to AOA and AOB; (ii) beyond AOM, NIs exhibit negative effects on other nitrifiers, like NOB; (iii) QI was the sole NI that significantly affected prokaryotic and fungal diversity. Our findings (i) highlight the need for novel NI strategies that consider the variable sensitivity of AOM groups to the different NIs (ii) identify QI as a potent AOA inhibitor, and (iii) stress the need for monitoring NIs' impact on off-target soil microorganisms to ensure sustainable N fertilizers use and soil ecosystem functioning.


Asunto(s)
Microbiota , Nitrificación , Amoníaco/química , Amoníaco/farmacología , Archaea , Bacterias , Guanidinas , Iminas/farmacología , Oxidación-Reducción , Filogenia , Picolinas , Quinonas/farmacología , Suelo/química , Microbiología del Suelo
2.
Sci Total Environ ; 823: 153744, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149062

RESUMEN

Agro-food processing industries generate large amounts of pesticide-contaminated effluents that pose a significant environmental threat if managed improperly. Biopurification systems like biobeds could be utilized for the depuration of these effluents although direct evidence for their efficiency are still lacking. We employed a column leaching experiment with pilot biobeds to (i) assess the depuration potential of biobeds against fungicide-contaminated effluents from seed-producing (carboxin, metalaxyl-M, fluxapyroxad), bulb-handling (thiabendazole, fludioxonil and chlorothalonil) and fruit-packaging (fludioxonil, imazalil) industries, (ii) to monitor microbial succession via amplicon sequencing and (iii) to determine the presence and dynamics of mobile genetic elements like intl1, IS1071, IncP-1 and IncP-1ε often associated with the transposition of pesticide-degrading genes. Biobeds could effectively retain (adsorbed but extractable with organic solvents) and dissipate (degraded and/or not extractable with organic solvents) the fungicides that were contained in the agro-industrial effluents with 93.1-99.98% removal efficiency in all cases. Lipophilic substances like fluxapyroxad were mostly retained in the biobed while more polar substances like metalaxyl-M and carboxin were mostly dissipated or showed higher leaching potential like metalaxyl-M. Biobeds supported a bacterial and fungal community that was not affected by fungicide application but showed clear temporal patterns in the different biobed horizons. This was most probably driven by the establishment of microaerophilic conditions upon water saturation of biobeds, as supported by the significant increase in the abundance of facultative or strict anaerobes like Chloroflexi/Anaerolinae, Acidibacter and Myxococcota. Wastewater application did not affect the dynamics of mobile genetic elements in biobeds whose abundance (intl1, IS1071, IncP-1ε) showed significant increases with time. Our findings suggest that biobeds could effectively decontaminate fungicide-contaminated effluents produced by agro-food industries and support a rather resilient microbial community.


Asunto(s)
Fungicidas Industriales , Microbiota , Plaguicidas , Biodegradación Ambiental , Industria de Procesamiento de Alimentos , Secuencias Repetitivas Esparcidas , Plaguicidas/análisis
3.
Environ Pollut ; 301: 119030, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189300

RESUMEN

Imazalil (IMZ) is an imidazole fungicide commonly used by fruit-packaging plants (FPPs) to control fungal infections during storage. Its application leads to the production of pesticide-contaminated wastewaters, which, according to the European Commission, need to be treated on site. Considering the lack of efficient treatment methods, biodepuration systems inoculated with tailored-made inocula specialized on the removal of such persistent fungicides appear as an appropriate solution. However, nothing is known about the biodegradation of IMZ. We aimed to isolate and characterize microorganisms able to degrade the recalcitrant fungicide IMZ and eventually to test their removal efficiency under near practical bioengineering conditions. Enrichment cultures from a soil receiving regular discharges of effluents from a FPP, led to the isolation of a Cladosporium herbarum strain, which showed no pathogenicity on fruits, a trait essential for its biotechnological exploitation in FPPs. The fungus was able to degrade up to 100 mg L-1 of IMZ. However, its degrading capacity and growth was reduced at increasing IMZ concentrations in a dose-dependent manner, suggesting the involvement of a detoxification rather than an energy-gain mechanism in the dissipation of IMZ. The isolate could tolerate and gradually degrade the fungicides fludioxonil (FLD) and thiabendazole (TBZ), also used in FPPs and expected to coincide alongside IMZ in FPP effluents. The capacity of the isolate to remove IMZ in a practical context was evaluated in a benchtop immobilized-cell bioreactor fed with artificial IMZ-contaminated wastewater (200 mg L-1). The fungal strain established in the reactor, completely dominated the fungal community and effectively removed >96% of IMZ. The bioreactor also supported a diverse bacterial community composed of Sphingomonadales, Burkholderiales and Pseudomonadales. Our study reports the isolation of the first IMZ-degrading microorganism with high efficiency to remove IMZ from agro-industrial effluents under bioengineering conditions.


Asunto(s)
Fungicidas Industriales , Cladosporium , Hongos/metabolismo , Fungicidas Industriales/metabolismo , Imidazoles
4.
J Environ Manage ; 248: 109221, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31310935

RESUMEN

Agro-food industries that use pesticides constitute significant point sources for the contamination of natural water resources. Despite that, little is known about the treatment of their pesticide-contaminated effluents. Biobeds could be a possible solution for the depuration of these effluents. In this context, we explored the degradation and adsorption of pesticides used in seed-coating (carboxin (CBX), metalaxyl-M (MET-M), fluxapyroxad (FLX), fludioxonil (FLD)), bulb-dipping (chlorothalonil (CHT), thiabendazole (TBZ), FLD) and fruit-packaging activities (FLD) in a biomixture, used as biobed packing material, and in soil. The degradation of pesticides was tested individually and in mixtures relevant to their industrial use, while FLD was also tested at different concentrations (10, 20, and 150 mg kg-1) representing its use in the different industries. CBX, FLD, and CHT, when applied individually, and all other pesticides when applied in mixtures, degraded more rapidly in biomixture than in soil. In most cases pesticides application in mixtures retarded their degradation. This was more pronounced in soil than in biomixture, especially for MET-M and FLD. CHT had the most prominent inhibitory effect on the degradation of TBZ and FLD. FLD degradation showed a dose-dependent pattern (DT50 42.4 days at 10 mg kg-1 and 107.6 days at 150 mg kg-1). All pesticides showed higher adsorption affinity in the biomixture (Kf = 3.23-123.3 g mL-1) compared to soil (Kf = 1.15-31.2 g mL-1). We provide initial evidence for the potential of the tested biomixture to remove pesticides contained in effluents produced by different agro-industrial activities. Tests in full-scale biobeds packed with this biomixture will unravel their full depuration potential for the treatment of these agro-industrial effluents.


Asunto(s)
Plaguicidas , Adsorción , Biodegradación Ambiental , Frutas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA