Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 10792, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402813

RESUMEN

Radon (222Rn) and its progeny are responsible for half of the annual dose from natural radiation and the most frequent cause for lung cancer induction after smoking. During inhalation, progeny nuclides accumulate in the respiratory tract while most of the radon gas is exhaled. The decay of progeny nuclides in the lung together with the high radiosensitivity of this tissue lead to equivalent doses implying a significant cancer risk. Here, we use gamma spectroscopy to measure the attachment of radon progeny on an air-ventilated filter system within a radon enriched atmosphere, mimicking the respiratory tract. A mathematical model was developed to describe the measured time-dependent activities of radon progeny on the filter system. We verified a linear relation between the ambient radon activity concentration during exposure and the amount of decay products on the filter system. The measured activities on the filters and its mathematical description are in good agreement. The developed experimental set-up can thus serve to further investigate the deposition of radon progeny in the respiratory tract under varying conditions for determination of dose conversion factors in radiation protection, which we demonstrate by deriving dose estimations in mouse lung.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Monitoreo de Radiación , Radón , Animales , Ratones , Hijas del Radón/análisis , Radón/análisis , Contaminantes Radiactivos del Aire/análisis , Pulmón/química , Administración por Inhalación , Monitoreo de Radiación/métodos , Contaminación del Aire Interior/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-36767140

RESUMEN

Radon, a naturally occurring radioactive noble gas, contributes significantly to lung cancer when incorporated from our natural environment. However, despite having unknown underlying mechanisms, radon is also used for therapeutic purposes to treat inflammatory diseases such as rheumatoid arthritis. Data on the distribution and accumulation of radon in different tissues represent an important factor in dose determination for risk estimation, the explanation of potential therapeutic effects and the calculation of doses to different tissues using biokinetic dosimetry models. In this paper, radon's solubility in bones, muscle tissue, adipose tissue, bone marrow, blood, a dissolved gelatin and oleic acid were determined. In analogy to current radon use in therapies, samples were exposed to radon gas for 1 h using two exposure protocols combined with established γ-spectroscopic measurements. Solubility data varied over two orders of magnitude, with the lowest values from the dissolved gelatin and muscle tissue; radon's solubility in flat bones, blood and adipose tissue was one order of magnitude higher. The highest values for radon solubility were measured in bone marrow and oleic acid. The data for long bones as well as bone marrow varied significantly. The radon solubility in the blood suggested a radon distribution within the body that occurred via blood flow, reaching organs and tissues that were not in direct contact with radon gas during therapy. Tissues with similar compositions were expected to reveal similar radon solubilities; however, yellow bone marrow and adipose tissue showed differences in solubility even though their chemical composition is nearly the same-indicating that interactions on the microscopic scale between radon and the solvent might be important. We found high solubility in bone marrow-where sensitive hematopoietic cells are located-and in adipose tissue, where the biological impact needs to be further elucidated.


Asunto(s)
Contaminantes Radiactivos del Aire , Radón , Radón/análisis , Solubilidad , Gelatina , Ácido Oléico , Contaminantes Radiactivos del Aire/análisis , Gases
4.
Radiat Environ Biophys ; 61(2): 279-292, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35377069

RESUMEN

Radon-222 is pervasive in our environment and the second leading cause of lung cancer induction after smoking while it is simultaneously used to mediate anti-inflammatory effects. During exposure, radon gas distributes inhomogeneously in the body, making a spatially resolved dose quantification necessary to link physical exposure conditions with accompanying risks and beneficial effects. Current dose predictions rely on biokinetic models based on scarce input data from animal experiments and indirect exhalation measurements of a limited number of humans, which shows the need for further experimental verification. We present direct measurements of radon decay in the abdomen and thorax after inhalation as proof of principle in one patient. At both sites, most of the incorporated radon is removed within ~ 3 h, whereas a smaller fraction is retained longer and accounts for most of the deposited energy. The obtained absorbed dose values were [Formula: see text] µGy (abdomen, radon gas) and [Formula: see text] µGy (thorax, radon and progeny) for a one-hour reference exposure at a radon activity concentration of 55 kBq m-3. The accumulation of long-retained radon in the abdomen leads to higher dose values at that site than in the thorax. Contrasting prior work, our measurements are performed directly at specific body sites, i.e. thorax and abdomen, which allows for direct spatial distinction of radon kinetics in the body. They show more incorporated and retained radon than current approaches predict, suggesting higher doses. Although obtained only from one person, our data may thus represent a challenge for the barely experimentally benchmarked biokinetic dose assessment model.


Asunto(s)
Contaminantes Radiactivos del Aire , Radón , Administración por Inhalación , Contaminantes Radiactivos del Aire/análisis , Animales , Humanos , Cinética , Pulmón , Dosis de Radiación , Radón/análisis , Hijas del Radón
5.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396815

RESUMEN

Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing radiation. Radon, an imperceptible natural occurring radioactive noble gas, contributes as the largest single fraction to radiation exposure from natural sources. For that reason, radon represents a major issue for radiation protection. Nevertheless, radon is also applied for the therapy of inflammatory and degenerative diseases in galleries and spas to many thousand patients a year. In either case, chronic environmental exposure or therapy, the effect of radon on the organism exposed is still under investigation at all levels of interaction. This includes the physical stage of diffusion and energy deposition by radioactive decay of radon and its progeny and the biological stage of initiating and propagating a physiologic response or inducing cancer after chronic exposure. The purpose of this manuscript is to comprehensively review the current knowledge of radon and its progeny on physical background, associated cancer risk and potential therapeutic effects.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias/etiología , Exposición a la Radiación/efectos adversos , Radón/efectos adversos , Radón/uso terapéutico , Animales , Ensayos Clínicos como Asunto , Humanos , Neoplasias/epidemiología , Monitoreo de Radiación , Medición de Riesgo , Factores de Riesgo
6.
Cancers (Basel) ; 11(3)2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836676

RESUMEN

Cancer studies suggest that the spatial localization of connexin43 (Cx43) could play an important role during tumor genesis and the formation of metastasis. Cx43 has been shown to be upregulated in cancer cells; thereby a shift from Cx43 normal localization in gap junctions in the cell membrane towards a primarily cytoplasmic localization was observed in many studies. So far neither the spatial arrangements of Cx43 in breast cancer cells nor the effects of treatment outcome (ionizing radiation and antibody therapy) on the spatial arrangements of Cx43, have been microscopically studied on the nanoscale. This has brought up the idea to study the micro- and nanoscaled spatial Cx43 arrangements in a model of breast cancer-related cell types, i.e., SkBr3 breast cancer cells, BJ fibroblasts, and primary human internal mammary artery endothelial cells (HIMAECs). The cells were treated with neuregulin1 (NRG1), trastuzumab (Herceptin), or 6MeV-photon irradiation at a dose of 4 Gy. NRG1 stimulates further NRG1 release in the tumor endothelium that may lead to an enhanced tumor protective effect whereas Herceptin, used in antibody treatment, works in an antagonistic fashion to NRG1. After fluorescent labelling with specific antibodies, the molecular positions of Cx43 in the perinuclear cytosol and in the cell periphery at the membrane were determined for the three treatment related applications (NRG1, trastuzumab, 4 Gy irradiation) using confocal laser scanning microscopy (CLSM) and single molecule localization microscopy (SMLM). These techniques enable investigations of Cx43 enrichment and topological arrangements of Cx43 molecules from the micro-scale of a whole cell to the nano-scale of single molecules. In SkBr3 cells with and without radiation treatment high density accumulations were detected which seem to be diluted after NRG1 and trastuzumab treatment although the SMLM distance frequency distributions did not significantly vary. In BJ fibroblasts and HIMAECs differences between periphery and perinuclear cytosol were observed after the different treatment processes. HIMAECs showed significant Cx43 accumulation after NRG1, trastuzumab, and radiation treatment in the perinuclear region whereas in the periphery radiation has less influence as compared to the control. BJ cells were reacting to the treatments by Cx43 accumulations in the perinuclear region but also in the periphery. In conclusion, it was shown that by using CLSM and super-resolution SMLM, treatment effects on the spatial and thus functional arrangements of Cx43 became detectable for investigations of tumor response mechanisms.

7.
Nanoscale ; 10(9): 4320-4331, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29443341

RESUMEN

Ionizing radiation (IR)-induced damage confers functional and conformational changes to nuclear chromatin associated with DNA single and double strand breaks. This leads to the activation of complex DNA repair machineries that aim to preserve the integrity of the DNA molecule. Since hetero- and euchromatin are differentially accessible to DNA repair pathways, local chromatin re-arrangements and structural changes are among the consequences of an activated DNA damage response. Using super-resolution localization microscopy (SRLM), we investigated the X-ray-induced repositioning of γ-H2AX and histone H3K9me3 heterochromatin marks in the nuclei of HeLa cells. Aliquots of cells exposed to different IR doses (0.5, 1 and 2 Gy) were fixed at certain repair times for SRLM imaging. The number and size of nano-scale γ-H2AX molecule signal clusters detected increased with rising irradiation doses, with the number and size being the highest 0.5 h after irradiation. With growing repair time both the number and size of γ-H2AX nano-clusters decreased. Eight hours after irradiation, the number of clusters reached control levels, in agreement with the disappearance of most IR-induced foci seen by conventional microscopy. SRLM investigation of heterochromatin marks in spatial relation to γ-H2AX clusters showed that on average the heterochromatin density was high in the vicinity of γ-H2AX, which is in agreement with the observation that DSBs seem to relocate to the surface of heterochromatin clusters for DNA repair. The data demonstrate the potential of pointillist images obtained by SRLM for quantitative investigations of chromatin conformation changes and repair-protein recruitment on the nanoscale as measures for a radiation response.


Asunto(s)
Reparación del ADN , Heterocromatina/química , Histonas/química , Radiación Ionizante , Daño del ADN , Células HeLa , Humanos , Metilación , Microscopía , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...