Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673915

RESUMEN

Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/etiología , Animales , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339069

RESUMEN

Parkinson's disease (PD) is characterized by substantial phenotypic heterogeneity that limits the disease prognosis and patient's counseling, and complicates the design of further clinical trials. There is an unmet need for the development and validation of biomarkers for the prediction of the disease course. In this study, we utilized flow cytometry and in vitro approaches on peripheral blood cells and isolated peripheral blood mononuclear cell (PBMC)-derived macrophages to characterize specific innate immune populations in PD patients versus healthy donors. We found a significantly lower percentage of B lymphocytes and monocyte populations in PD patients. Monocytes in PD patients were characterized by a higher CD40 expression and on-surface expression of the type I membrane glycoprotein sortilin, which showed a trend of negative correlation with the age of the patients. These results were further investigated in vitro on PBMC-derived macrophages, which, in PD patients, showed higher sortilin expression levels compared to cells from healthy donors. The treatment of PD-derived macrophages with oxLDL led to higher foam cell formation compared to healthy donors. In conclusion, our results support the hypothesis that surface sortilin expression levels on human peripheral monocytes may potentially be utilized as a marker of Parkinson's disease and may segregate the sporadic versus the genetically induced forms of the disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Leucocitos Mononucleares/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Biomarcadores/metabolismo
3.
Biology (Basel) ; 12(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36671785

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder with motor, physical and behavioral symptoms that can have a profound impact on the patient's quality of life. Most cases are idiopathic, and the exact mechanism of the disease's cause is unknown. The current hypothesis focuses on the gut-brain axis and states that gut microbiota dysbiosis can trigger inflammation and advances the development of Parkinson's disease. This systematic review presents the current knowledge of gut microbiota analysis and inflammation based on selected studies on Parkinson's patients and experimental animal models. Changes in gut microbiota correlate with Parkinson's disease, but only a few studies have considered inflammatory modulators as important triggers of the disease. Nevertheless, it is evident that proinflammatory cytokines and chemokines are induced in the gut, the circulation, and the brain before the development of the disease's neurological symptoms and exacerbate the disease. Increased levels of tumor necrosis factor, interleukin-1ß, interleukin-6, interleukin-17A and interferon-γ can correlate with altered gut microbiota. Instead, treatment of gut dysbiosis is accompanied by reduced levels of inflammatory mediators in specific tissues, such as the colon, brain and serum and/or cerebrospinal fluid. Deciphering the role of the immune responses and the mechanisms of the PD-associated gut microbiota will assist the interpretation of the pathogenesis of Parkinson's and will elucidate appropriate therapeutic strategies.

4.
Biology (Basel) ; 11(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290283

RESUMEN

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that has a major protective role against intestinal inflammation. We recently revealed that intestinal epithelial cells in vitro regulate NFκB-driven transcriptional responses to TNF via an autocrine mechanism dependent on IL-10 secretion. Here in this study, we investigated the impact of IL-10 deficiency on the NFκB pathway and its downstream targets in the small intestinal mucosa in vivo. We observed dysregulation of TNF, IκBα, and A20 gene and protein expression in the small intestine of steady-state or TNF-injected Il10-/- mice, compared to wild-type C57BL6/J counterparts. Upon TNF injection, tissue from the small intestine showed upregulation of NFκB p65[RelA] activity, which was totally diminished in Il10-/- mice and correlated with reduced levels of TNF, IκBα, and A20 expression. In serum, whilst IgA levels were noted to be markedly downregulated in IL-10-deficient- mice, normal levels of mucosal IgA were seen in intestine mucosa. Importantly, dysregulated cytokine/chemokine levels were observed in both serum and intestinal tissue lysates from naïve, as well as TNF-injected Il10-/- mice. These data further support the importance of the IL-10-canonical NFκB signaling pathway axis in regulating intestinal mucosa homeostasis and response to inflammatory triggers in vivo.

5.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077138

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.


Asunto(s)
COVID-19 , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Trastornos Parkinsonianos , COVID-19/complicaciones , Comunicación Celular , Humanos , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/etiología , Trastornos Parkinsonianos/patología , ARN Viral , SARS-CoV-2 , alfa-Sinucleína/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G306-G317, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916405

RESUMEN

The alternative (noncanonical) nuclear factor-κB (NF-κB) signaling pathway predominantly regulates the function of the p52/RelB heterodimer. Germline Nfkb2 deficiency in mice leads to loss of p100/p52 protein and offers protection against a variety of gastrointestinal conditions, including azoxymethane/dextran sulfate sodium (DSS)-induced colitis-associated cancer and lipopolysaccharide (LPS)-induced small intestinal epithelial apoptosis. However, the common underlying protective mechanisms have not yet been fully elucidated. We applied high-throughput RNA-Seq and proteomic analyses to characterize the transcriptional and protein signatures of the small intestinal mucosa of naïve adult Nfkb2-/- mice. Those data were validated by immunohistochemistry and quantitative ELISA using both small intestinal tissue lysates and serum. We identified a B-lymphocyte defect as a major transcriptional signature in the small intestinal mucosa and immunoglobulin A as the most downregulated protein by proteomic analysis in Nfkb2-/- mice. Small intestinal immunoglobulins were dramatically dysregulated, with undetectable levels of immunoglobulin A and greatly increased amounts of immunoglobulin M being detected. The numbers of IgA-producing, cluster of differentiation (CD)138-positive plasma cells were also reduced in the lamina propria of the small intestinal villi of Nfkb2-/- mice. This phenotype was even more striking in the small intestinal mucosa of RelB-/- mice, although these mice were equally sensitive to LPS-induced intestinal apoptosis as their RelB+/+ wild-type counterparts. NF-κB2/p52 deficiency confers resistance to LPS-induced small intestinal apoptosis and also appears to regulate the plasma cell population and immunoglobulin levels within the gut.NEW & NOTEWORTHY Novel transcriptomic analysis of murine proximal intestinal mucosa revealed an unexpected B cell signature in Nfkb2-/- mice. In-depth analysis revealed a defect in the CD38+ B cell population and a gut-specific dysregulation of immunoglobulin levels.


Asunto(s)
Subunidad p52 de NF-kappa B , Células Plasmáticas , Animales , Inmunoglobulina A/metabolismo , Inmunoglobulinas/metabolismo , Mucosa Intestinal/metabolismo , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Células Plasmáticas/metabolismo , Proteómica
7.
Biomedicines ; 10(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35453507

RESUMEN

The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages, revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB target genes, including immediate-early and late response genes, e.g., Fos and Cxcl10. Validation experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed genes revealed interferon and cytokine signaling were affected. These immune response pathways were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of key molecules involved in immune responses. It is therefore essential that this information be taken into consideration when designing and interpreting future experiments using this transgenic strain.

8.
J Immunol ; 208(4): 941-954, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35082159

RESUMEN

TPL-2 kinase plays an important role in innate immunity, activating ERK1/2 MAPKs in myeloid cells following TLR stimulation. We investigated how TPL-2 controls transcription in TLR4-stimulated mouse macrophages. TPL-2 activation of ERK1/2 regulated expression of genes encoding transcription factors, cytokines, chemokines, and signaling regulators. Bioinformatics analysis of gene clusters most rapidly induced by TPL-2 suggested that their transcription was mediated by the ternary complex factor (TCF) and FOS transcription factor families. Consistently, TPL-2 induced ERK1/2 phosphorylation of the ELK1 TCF and the expression of TCF target genes. Furthermore, transcriptomic analysis of TCF-deficient macrophages demonstrated that TCFs mediate approximately half of the transcriptional output of TPL-2 signaling, partially via induced expression of secondary transcription factors. TPL-2 signaling and TCFs were required for maximal TLR4-induced FOS expression. Comparative analysis of the transcriptome of TLR4-stimulated Fos -/- macrophages indicated that TPL-2 regulated a significant fraction of genes by controlling FOS expression levels. A key function of this ERK1/2-TCF-FOS pathway was to mediate TPL-2 suppression of type I IFN signaling, which is essential for host resistance against intracellular bacterial infection.


Asunto(s)
Interferón beta/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Animales , Regulación de la Expresión Génica , Interferón beta/metabolismo , Lipopolisacáridos/inmunología , Quinasas Quinasa Quinasa PAM/genética , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción TCF/metabolismo
9.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613708

RESUMEN

One of the major mediators of neuroinflammation in PD is tumour necrosis factor alpha (TNF-α), which, similar to other cytokines, is produced by activated microglia and astrocytes. Although TNF-α can be neuroprotective in the brain, long-term neuroinflammation and TNF release can be harmful, having a neurotoxic role that leads to death of oligodendrocytes, astrocytes, and neurons and, therefore, is associated with neurodegeneration. Apart from cytokines, a wide family of molecules with homologous structures, namely chemokines, play a key role in neuro-inflammation by drawing cytotoxic T-lymphocytes and activating microglia. The objective of the current study was to examine the levels of the serum TNF-α and CCL2 (Chemokine (C-C motif) ligand 2), also known as MCP-1 (Monocyte Chemoattractant Protein-1), in PD patients compared with healthy controls. We also investigated the associations between the serum levels of these two inflammatory mediators and a number of clinical symptoms, in particular, disease severity and cognition. Such an assessment may point to their prognostic value and provide some treatment hints. PD patients with advanced stage on the Hoehn-Yahr scale showed an increase in TNF-α levels compared with PD patients with stages 1 and 2 (p = 0.01). Additionally, the UPDRS score was significantly associated with TNF-α levels. CCL2 levels, however, showed no significant associations.


Asunto(s)
Quimiocina CCL2 , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Factor de Necrosis Tumoral alfa , Enfermedades Neuroinflamatorias , Quimiocinas , Citocinas , Gravedad del Paciente
10.
Front Pharmacol ; 12: 766293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955836

RESUMEN

Clostridioides difficile infection (CDI) is a leading cause of antibiotic-associated diarrhoea. Adhesion of this Gram-positive pathogen to the intestinal epithelium is a crucial step in CDI, with recurrence and relapse of disease dependent on epithelial interaction of its endospores. Close proximity, or adhesion of, hypervirulent strains to the intestinal mucosa are also likely to be necessary for the release of C. difficile toxins, which when internalized, result in intestinal epithelial cell rounding, damage, inflammation, loss of barrier function and diarrhoea. Interrupting these C. difficile-epithelium interactions could therefore represent a promising therapeutic strategy to prevent and treat CDI. Intake of dietary fibre is widely recognised as being beneficial for intestinal health, and we have previously shown that soluble non-starch polysaccharides (NSP) from plantain banana (Musa spp.), can block epithelial adhesion and invasion of a number of gut pathogens, such as E. coli and Salmonellae. Here, we assessed the action of plantain NSP, and a range of alternative soluble plant fibres, for inhibitory action on epithelial interactions of C. difficile clinical isolates, purified endospore preparations and toxins. We found that plantain NSP possessed ability to disrupt epithelial adhesion of C. difficile vegetative cells and spores, with inhibitory activity against C. difficile found within the acidic (pectin-rich) polysaccharide component, through interaction with the intestinal epithelium. Similar activity was found with NSP purified from broccoli and leek, although seen to be less potent than NSP from plantain. Whilst plantain NSP could not block the interaction and intracellular action of purified C. difficile toxins, it significantly diminished the epithelial impact of C. difficile, reducing both bacteria and toxin induced inflammation, activation of caspase 3/7 and cytotoxicity in human intestinal cell-line and murine intestinal organoid cultures. Dietary supplementation with soluble NSP from plantain may therefore confer a protective effect in CDI patients by preventing adhesion of C. difficile to the mucosa, i.e. a "contrabiotic" effect, and diminishing its epithelial impact. This suggests that plantain soluble dietary fibre may be a therapeutically effective nutritional product for use in the prevention or treatment of CDI and antibiotic-associated diarrhoea.

11.
Front Immunol ; 12: 690817, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220850

RESUMEN

Interleukin 10 (IL-10) is a pleiotropic, anti-inflammatory cytokine that has a major protective role in the intestine. Although its production by cells of the innate and adaptive immune system has been extensively studied, its intrinsic role in intestinal epithelial cells is poorly understood. In this study, we utilised both ATAC sequencing and RNA sequencing to define the transcriptional response of murine enteroids to tumour necrosis factor (TNF). We identified that the key early phase drivers of the transcriptional response to TNF within intestinal epithelium were NFκB transcription factor dependent. Using wild-type and Il10-/- enteroid cultures, we showed an intrinsic, intestinal epithelium specific effect of IL-10 deficiency on TNF-induced gene transcription, with significant downregulation of identified NFκB target genes Tnf, Ccl20, and Cxcl10, and delayed overexpression of NFκB inhibitor encoding genes, Nfkbia and Tnfaip3. IL-10 deficiency, or immunoblockade of IL-10 receptor, impacted on TNF-induced endogenous NFκB activity and downstream NFκB target gene transcription. Intestinal epithelium-derived IL-10 appears to play a crucial role as a positive regulator of the canonical NFκB pathway, contributing to maintenance of intestinal homeostasis. This is particularly important in the context of an inflammatory environment and highlights the potential for future tissue-targeted IL-10 therapeutic intervention.


Asunto(s)
Inflamación/inmunología , Interleucina-10/inmunología , Mucosa Intestinal/inmunología , Animales , Interleucina-10/deficiencia , Interleucina-10/genética , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/inmunología , Factor de Necrosis Tumoral alfa/inmunología
12.
Curr Pharm Des ; 27(35): 3702-3713, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33602081

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a multifactorial condition influenced by the immune system, the intestinal microbiota, environmental factors, genetic and epigenetic factors. Genetic- and environment- induced dysregulation of the Nuclear Factor-kappa B (NF-κB) transcription factor pathway has been linked to IBD pathogenesis. OBJECTIVE: To assess the current evidence in relation to the contribution of the classical and alternative NF-κB pathways in IBD and to discuss the epigenetic mechanisms that impact on NF-κB function. METHODS: A Medline search for 'NF-kappaB/NF-κB', in combination with terms including 'inflammatory bowel disease/IBD', 'intestinal inflammation', 'Crohn's disease', 'ulcerative colitis', 'colitis'; 'epigenetics', 'DNA methylation', 'histones', 'microRNAs/miRNAs' and 'short non-coding/long non-coding RNAs' was performed. RESULTS: Both NF-κB pathways contribute to the chronic inflammation underlying IBD by regulating the inflammatory immune responses and homeostasis of the intestinal epithelium (classical pathway) or regulating bowel inflammation and epithelial microfold (M) cell function (alternative pathway). DNA methylation is a common epigenetic modification in intestinal inflammation, including NFKB1 and RELA loci. Conversely, little is understood regarding epigenetic effects on genes encoding other NF-κB subunits, particularly those of the alternative pathway, and in the context of IBD. However, NF-κB interaction with chromatin modifiers is also seen to be an essential mechanism of regulation of downstream target genes relevant to NF-κB-mediated inflammatory responses. CONCLUSION: Further research is clearly warranted in this area, as understanding the cell-specific regulation of the NF-κB pathways will bring researchers into a position to achieve more efficient stratification of IBD patients, and more targeted and effective choice of treatment.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , MicroARNs , Colitis/genética , Epigénesis Genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , FN-kappa B/genética , FN-kappa B/metabolismo
13.
J Transl Med ; 18(1): 468, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298112

RESUMEN

BACKGROUND: In pre-clinical research, systematic reviews have the potential to mitigate translational challenges by facilitating understanding of how pre-clinical studies can inform future clinical research. Yet their conduct is encumbered by heterogeneity in the outcomes measured and reported, and those outcomes may not always relate to the most clinically important outcomes. We aimed to systematically review outcomes measured and reported in pre-clinical in vivo studies of pharmacological interventions to treat high blood glucose in mouse models of type 2 diabetes. METHODS: A systematic review of pre-clinical in vivo studies of pharmacological interventions aimed at addressing elevated blood glucose in mouse models of type 2 diabetes was completed. Studies were screened for eligibility and outcomes extracted from the included studies. The outcomes were recorded verbatim and classified into outcome domains using an existing outcome taxonomy. Outcomes were also compared to those identified in a systematic review of registered phase 3/4 clinical trials for glucose lowering interventions in people with type 2 diabetes. RESULTS: Review of 280 included studies identified 532 unique outcomes across 19 domains. No single outcome, or domain, was measured in all studies and only 132 (21%) had also been measured in registered phase 3/4 clinical trials. A core outcome set, representing the minimum that should be measured and reported, developed for type 2 diabetes effectiveness clinical trials includes 18 core outcomes, of these 12 (71%) outcomes were measured and reported in one or more of the included pre-clinical studies. CONCLUSIONS: There is heterogeneity of outcomes reported in pre-clinical research. Harmonisation of outcomes across the research pathway using a core outcome set may facilitate interpretation, evidence synthesis and translational success, and may contribute to the refinement of the use of animals in research. Systematic review registration: The study was prospectively registered on the PROSPERO Database, registration number CRD42018106831.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones , Proyectos de Investigación , Resultado del Tratamiento
14.
Dis Model Mech ; 13(11)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32958515

RESUMEN

Inflammatory bowel diseases (IBDs) cause significant morbidity and mortality. Aberrant NF-κB signalling is strongly associated with these conditions, and several established drugs influence the NF-κB signalling network to exert their effect. This study aimed to identify drugs that alter NF-κB signalling and could be repositioned for use in IBD. The SysmedIBD Consortium established a novel drug-repurposing pipeline based on a combination of in silico drug discovery and biological assays targeted at demonstrating an impact on NF-κB signalling, and a murine model of IBD. The drug discovery algorithm identified several drugs already established in IBD, including corticosteroids. The highest-ranked drug was the macrolide antibiotic clarithromycin, which has previously been reported to have anti-inflammatory effects in aseptic conditions. The effects of clarithromycin effects were validated in several experiments: it influenced NF-κB-mediated transcription in murine peritoneal macrophages and intestinal enteroids; it suppressed NF-κB protein shuttling in murine reporter enteroids; it suppressed NF-κB (p65) DNA binding in the small intestine of mice exposed to lipopolysaccharide; and it reduced the severity of dextran sulphate sodium-induced colitis in C57BL/6 mice. Clarithromycin also suppressed NF-κB (p65) nuclear translocation in human intestinal enteroids. These findings demonstrate that in silico drug repositioning algorithms can viably be allied to laboratory validation assays in the context of IBD, and that further clinical assessment of clarithromycin in the management of IBD is required.This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Análisis de Sistemas , Animales , Células Cultivadas , Claritromicina/farmacología , Claritromicina/uso terapéutico , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , ADN/metabolismo , Sulfato de Dextran , Redes Reguladoras de Genes , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Lipopolisacáridos , Luciferasas/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Unión Proteica/efectos de los fármacos , Transducción de Señal , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Front Immunol ; 11: 1794, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849644

RESUMEN

Interleukin-10 (IL-10) is an immunoregulatory cytokine that plays a pivotal role in modulating inflammation. IL-10 has inhibitory effects on proinflammatory cytokine production and function in vitro and in vivo; as such, IL-10 is viewed as a potential treatment for various inflammatory diseases. However, a significant drawback of using IL-10 in clinical application is the fact that the biologically active form of IL-10 is an unstable homodimer, which has a short half-life and is easily degraded in vivo. Consequently, IL-10 therapy using recombinant native IL-10 has had only limited success in the treatment of human disease. To improve the therapeutic potential of IL-10, we have generated a novel form of IL-10, which consists of two IL-10 monomer subunits linked in a head to tail fashion by a flexible linker. We show that the linker length per se did not affect the expression and biological activity of the stable IL-10 molecule, which was more active than natural IL-10, both in vitro and in vivo. We confirmed that the new form of IL-10 had a much-improved temperature- and pH-dependent biological stability compared to natural IL-10. The IL-10 dimer protein binds to the IL-10 receptor similarly to the natural IL-10 protein, as shown by antibody blocking and through the genetic modifications of one monomer in the IL-10 dimer specifically at the IL-10 receptor binding site. Finally, we showed that stable IL-10 is more effective at suppressing LPS-induced-inflammation in vivo compared to the natural IL-10. In conclusion, we have developed a new stable dimer version of the IL-10 protein with improved stability and efficacy to suppress inflammation. We propose that this novel stable IL-10 dimer could serve as the basis for the development of targeted anti-inflammatory drugs.


Asunto(s)
Interleucina-10/química , Interleucina-10/inmunología , Interleucina-10/metabolismo , Animales , Humanos , Ratones , Ingeniería de Proteínas/métodos , Estabilidad Proteica
16.
Aliment Pharmacol Ther ; 51(12): 1268-1285, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32372449

RESUMEN

BACKGROUND: The inflammatory bowel diseases, Crohn's disease and ulcerative colitis are related multifactorial diseases. Their pathogenesis is influenced by each individual's immune system, the environmental factors within exposome and genetic predisposition. Smoking habit is the single best-established environmental factor that influences disease phenotype, behaviour and response to therapy. AIM: To assess current epidemiological, experimental and clinical evidence that may explain how smoking impacts on the pathogenesis of inflammatory bowel disease. METHODS: A Medline search for 'cigarette smoking', in combination with terms including 'passive', 'second-hand', 'intestinal inflammation', 'Crohn's disease', 'ulcerative colitis', 'colitis'; 'intestinal epithelium', 'immune system', 'intestinal microbiota', 'tight junctions', 'mucus', 'goblet cells', 'Paneth cells', 'autophagy'; 'epigenetics', 'genes', 'DNA methylation', 'histones', 'short noncoding/long noncoding RNAs'; 'carbon monoxide/CO' and 'nitric oxide/NO' was performed. RESULTS: Studies found evidence of direct and indirect effects of smoking on various parameters, including oxidative damage, impairment of intestinal barrier and immune cell function, epigenetic and microbiota composition changes, that contribute to the pathogenesis of inflammatory bowel disease. CONCLUSIONS: Cigarette smoking promotes intestinal inflammation by affecting the function and interactions among intestinal epithelium, immune system and microbiota/microbiome.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Enteritis/etiología , Fumar Cigarrillos/epidemiología , Colitis Ulcerosa/epidemiología , Colitis Ulcerosa/etiología , Enfermedad de Crohn/epidemiología , Enfermedad de Crohn/etiología , Enteritis/epidemiología , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/epidemiología , Enfermedades Inflamatorias del Intestino/etiología , Intestinos/patología , Factores de Riesgo , Transducción de Señal/fisiología
17.
Cell Mol Gastroenterol Hepatol ; 10(1): 113-132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32004755

RESUMEN

BACKGROUND & AIMS: In patients with autoimmune atrophic gastritis and achlorhydria, hypergastrinemia is associated with the development of type 1 gastric neuroendocrine tumors (gNETs). Twelve months of treatment with netazepide (YF476), an antagonist of the cholecystokinin B receptor (CCKBR or CCK2R), eradicated some type 1 gNETs in patients. We investigated the mechanisms by which netazepide induced gNET regression using gene expression profiling. METHODS: We obtained serum samples and gastric corpus biopsy specimens from 8 patients with hypergastrinemia and type 1 gNETs enrolled in a phase 2 trial of netazepide. Control samples were obtained from 10 patients without gastric cancer. We used amplified and biotinylated sense-strand DNA targets from total RNA and Affymetrix (Thermofisher Scientific, UK) Human Gene 2.0 ST microarrays to identify differentially expressed genes in stomach tissues from patients with type 1 gNETs before, during, and after netazepide treatment. Findings were validated in a human AGSGR gastric adenocarcinoma cell line that stably expresses human CCK2R, primary mouse gastroids, transgenic hypergastrinemic INS-GAS mice, and patient samples. RESULTS: Levels of pappalysin 2 (PAPPA2) messenger RNA were reduced significantly in gNET tissues from patients receiving netazepide therapy compared with tissues collected before therapy. PAPPA2 is a metalloproteinase that increases the bioavailability of insulin-like growth factor (IGF) by cleaving IGF binding proteins (IGFBPs). PAPPA2 expression was increased in the gastric corpus of patients with type 1 gNETs, and immunohistochemistry showed localization in the same vicinity as CCK2R-expressing enterochromaffin-like cells. Up-regulation of PAPPA2 also was found in the stomachs of INS-GAS mice. Gastrin increased PAPPA2 expression with time and in a dose-dependent manner in gastric AGSGR cells and mouse gastroids by activating CCK2R. Knockdown of PAPPA2 in AGSGR cells with small interfering RNAs significantly decreased their migratory response and tissue remodeling in response to gastrin. Gastrin altered the expression and cleavage of IGFBP3 and IGFBP5. CONCLUSIONS: In an analysis of human gNETS and mice, we found that gastrin up-regulates the expression of gastric PAPPA2. Increased PAPPA2 alters IGF bioavailability, cell migration, and tissue remodeling, which are involved in type 1 gNET development. These effects are inhibited by netazepide.


Asunto(s)
Benzodiazepinonas/farmacología , Tumores Neuroendocrinos/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Proteína Plasmática A Asociada al Embarazo/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Animales , Benzodiazepinas/farmacología , Benzodiazepinonas/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Mucosa Gástrica/citología , Mucosa Gástrica/patología , Gastrinas/antagonistas & inhibidores , Gastrinas/sangre , Gastrinas/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Transgénicos , Tumores Neuroendocrinos/sangre , Tumores Neuroendocrinos/patología , Organoides , Compuestos de Fenilurea/uso terapéutico , Proteína Plasmática A Asociada al Embarazo/análisis , Proteína Plasmática A Asociada al Embarazo/antagonistas & inhibidores , Proteína Plasmática A Asociada al Embarazo/genética , Cultivo Primario de Células , Receptor de Colecistoquinina B/antagonistas & inhibidores , Receptor de Colecistoquinina B/metabolismo , Neoplasias Gástricas/sangre , Neoplasias Gástricas/patología , Resultado del Tratamiento
18.
Front Immunol ; 10: 2168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572379

RESUMEN

The heterogeneous nature of inflammatory bowel disease (IBD) presents challenges, particularly when choosing therapy. Activation of the NF-κB transcription factor is a highly regulated, dynamic event in IBD pathogenesis. Using a lentivirus approach, NF-κB-regulated luciferase was expressed in patient macrophages, isolated from frozen peripheral blood mononuclear cell samples. Following activation, samples could be segregated into three clusters based on the NF-κB-regulated luciferase response. The ulcerative colitis (UC) samples appeared only in the hypo-responsive Cluster 1, and in Cluster 2. Conversely, Crohn's disease (CD) patients appeared in all Clusters with their percentage being higher in the hyper-responsive Cluster 3. A positive correlation was seen between NF-κB-induced luciferase activity and the concentrations of cytokines released into medium from stimulated macrophages, but not with serum or biopsy cytokine levels. Confocal imaging of lentivirally-expressed p65 activation revealed that a higher proportion of macrophages from CD patients responded to endotoxin lipid A compared to controls. In contrast, cells from UC patients exhibited a shorter duration of NF-κB p65 subunit nuclear localization compared to healthy controls, and CD donors. Analysis of macrophage cytokine responses and patient metadata revealed a strong correlation between CD patients who smoked and hyper-activation of p65. These in vitro dynamic assays of NF-κB activation in blood-derived macrophages have the potential to segregate IBD patients into groups with different phenotypes and may therefore help determine response to therapy.


Asunto(s)
Núcleo Celular/inmunología , Colitis Ulcerosa/inmunología , Enfermedad de Crohn/inmunología , Macrófagos/inmunología , Transducción de Señal/inmunología , Factor de Transcripción ReIA/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Adulto , Animales , Núcleo Celular/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Femenino , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Transducción de Señal/genética , Factor de Transcripción ReIA/genética
19.
Sci Rep ; 9(1): 193, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655563

RESUMEN

Tumour necrosis factor (TNF) is a key cytokine during inflammatory responses and its dysregulation is detrimental in many inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease. Here, we used a bacterial artificial chromosome (BAC) construct that expresses luciferase under the control of the human TNF locus to generate a novel transgenic mouse, the hTNF.LucBAC strain. In vitro stimulation of hTNF.LucBAC cells of different origin revealed a cell specific response to stimuli demonstrating the integrated construct's ability as a proxy for inflammatory gene response. Lipopolysaccharide was the most potent luciferase inducer in macrophages, while TNF was a strong activator in intestinal organoids. Lipopolysaccharide-induced luciferase activity in macrophages was downregulated by inhibitors of NF-κB pathway, as well as by Interleukin-10, a known anti-inflammatory cytokine. Moreover, the transgene-dependent luciferase activity showed a positive correlation to the endogenous murine soluble TNF secreted to the culture medium. In conclusion, the hTNF.LucBAC strain is a valuable tool for studying and screening molecules that target TNF synthesis and will allow further functional studies of the regulatory elements of the TNF locus.


Asunto(s)
Luciferasas/genética , Factor de Necrosis Tumoral alfa/genética , Animales , Células Cultivadas , Cromosomas Artificiales Bacterianos , Modelos Animales de Enfermedad , Humanos , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Luciferasas/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , FN-kappa B/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis
20.
PLoS Pathog ; 12(8): e1005783, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27487182

RESUMEN

Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8-/-mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8-/-M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis.


Asunto(s)
Diferenciación Celular/inmunología , Lipólisis/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Macrófagos/inmunología , Proteínas Proto-Oncogénicas/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Células Th2/inmunología , Animales , Diferenciación Celular/genética , Fibrosis , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Lipólisis/genética , Quinasas Quinasa Quinasa PAM/genética , Macrófagos/patología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Esquistosomiasis mansoni/genética , Esquistosomiasis mansoni/patología , Células Th2/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...