Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 21830, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528651

RESUMEN

Sinus node (SN) pacemaking is based on a coupling between surface membrane ion-channels and intracellular Ca2+-handling. The fundamental role of the inward Na+/Ca2+ exchanger (NCX) is firmly established. However, little is known about the reverse mode exchange. A simulation study attributed important role to reverse NCX activity, however experimental evidence is still missing. Whole-cell and perforated patch-clamp experiments were performed on rabbit SN cells supplemented with fluorescent Ca2+-tracking. We established 2 and 8 mM pipette NaCl groups to suppress and enable reverse NCX. NCX was assessed by specific block with 1 µM ORM-10962. Mechanistic simulations were performed by Maltsev-Lakatta minimal computational SN model. Active reverse NCX resulted in larger Ca2+-transient amplitude with larger SR Ca2+-content. Spontaneous action potential (AP) frequency increased with 8 mM NaCl. When reverse NCX was facilitated by 1 µM strophantin the Ca2+i and spontaneous rate increased. ORM-10962 applied prior to strophantin prevented Ca2+i and AP cycle change. Computational simulations indicated gradually increasing reverse NCX current, Ca2+i and heart rate with increasing Na+i. Our results provide further evidence for the role of reverse NCX in SN pacemaking. The reverse NCX activity may provide additional Ca2+-influx that could increase SR Ca2+-content, which consequently leads to enhanced pacemaking activity.


Asunto(s)
Nodo Sinoatrial , Intercambiador de Sodio-Calcio , Animales , Conejos , Nodo Sinoatrial/metabolismo , Cloruro de Sodio , Miocitos Cardíacos/metabolismo , Calcio/metabolismo
2.
Sci Rep ; 11(1): 16652, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404848

RESUMEN

Cardiac alternans have crucial importance in the onset of ventricular fibrillation. The early explanation for alternans development was the voltage-driven mechanism, where the action potential (AP) restitution steepness was considered as crucial determining factor. Recent results suggest that restitution slope is an inadequate predictor for alternans development, but several studies still claim the role of membrane potential as underlying mechanism of alternans. These controversial data indicate that the relationship of restitution and alternans development is not completely understood. APs were measured by conventional microelectrode technique from canine right ventricular papillary muscles. Ionic currents combined with fluorescent measurements were recorded by patch-clamp technique. APs combined with fluorescent measurements were monitored by sharp microelectrodes. Rapid pacing evoked restitution-independent AP duration (APD) alternans. When non-alternating AP voltage command was used, Ca2+i-transient (CaT) alternans were not observed. When alternating rectangular voltage pulses were applied, CaT alternans were proportional to ICaL amplitude alternans. Selective ICaL inhibition did not influence the fast phase of APD restitution. In this study we found that ICaL has minor contribution in shaping the fast phase of restitution curve suggesting that ICaL-if it plays important role in the alternans mechanism-could be an additional factor that attenuates the reliability of APD restitution slope to predict alternans.


Asunto(s)
Potenciales de Acción , Calcio/metabolismo , Ventrículos Cardíacos/fisiopatología , Fibrilación Ventricular/fisiopatología , Animales , Señalización del Calcio , Perros , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , Miocardio/patología , Fibrilación Ventricular/metabolismo , Fibrilación Ventricular/patología
4.
Can J Physiol Pharmacol ; 99(2): 247-253, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33242286

RESUMEN

Activation of the parasympathetic nervous system has been reported to have an antiarrhythmic role during ischemia-reperfusion injury by decreasing the arrhythmia triggers. Furthermore, it was reported that the parasympathetic neurotransmitter acetylcholine is able to modulate the ATP-dependent potassium current (I K-ATP), a crucial current activated during hypoxia. However, the possible significance of this current modulation in the antiarrhythmic mechanism is not fully clarified. Action potentials were measured using the conventional microelectrode technique from canine left ventricular papillary muscle and free-running Purkinje fibers, under normal and hypoxic conditions. Ionic currents were measured using the whole-cell configuration of the patch-clamp method. Acetylcholine at 5 µmol/L did not influence the action potential duration (APD) either in Purkinje fibers or in papillary muscle preparations. In contrast, it significantly lengthened the APD and suppressed the Purkinje-ventricle APD dispersion when it was administered after 5 µmol/L pinacidil application. Carbachol at 3 µmol/L reduced the pinacidil-activated I K-ATP under voltage-clamp conditions. Acetylcholine lengthened the ventricular action potential under simulated ischemia condition. In this study, we found that acetylcholine inhibits the I K-ATP and thus suppresses the ventricle-Purkinje APD dispersion. We conclude that parasympathetic tone may reduce the arrhythmogenic substrate exerting a complex antiarrhythmic mechanism during hypoxic conditions.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Potasio/metabolismo , Ramos Subendocárdicos/efectos de los fármacos , Animales , Perros , Ventrículos Cardíacos/citología , Ramos Subendocárdicos/citología
5.
J Mol Cell Cardiol ; 153: 111-122, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33383036

RESUMEN

Repolarization alternans, a periodic oscillation of long-short action potential duration, is an important source of arrhythmogenic substrate, although the mechanisms driving it are insufficiently understood. Despite its relevance as an arrhythmia precursor, there are no successful therapies able to target it specifically. We hypothesized that blockade of the sodium­calcium exchanger (NCX) could inhibit alternans. The effects of the selective NCX blocker ORM-10962 were evaluated on action potentials measured with microelectrodes from canine papillary muscle preparations, and calcium transients measured using Fluo4-AM from isolated ventricular myocytes paced to evoke alternans. Computer simulations were used to obtain insight into the drug's mechanisms of action. ORM-10962 attenuated cardiac alternans, both in action potential duration and calcium transient amplitude. Three morphological types of alternans were observed, with differential response to ORM-10962 with regards to APD alternans attenuation. Analysis of APD restitution indicates that calcium oscillations underlie alternans formation. Furthermore, ORM-10962 did not markedly alter APD restitution, but increased post-repolarization refractoriness, which may be mediated by indirectly reduced L-type calcium current. Computer simulations reproduced alternans attenuation via ORM-10962, suggesting that it is acts by reducing sarcoplasmic reticulum release refractoriness. This results from the ORM-10962-induced sodium­calcium exchanger block accompanied by an indirect reduction in L-type calcium current. Using a computer model of a heart failure cell, we furthermore demonstrate that the anti-alternans effect holds also for this disease, in which the risk of alternans is elevated. Targeting NCX may therefore be a useful anti-arrhythmic strategy to specifically prevent calcium driven alternans.


Asunto(s)
Acetamidas/farmacología , Potenciales de Acción , Arritmias Cardíacas/tratamiento farmacológico , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Cromanos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/farmacología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Perros , Sistema de Conducción Cardíaco/efectos de los fármacos , Miocitos Cardíacos/metabolismo
6.
Front Physiol ; 12: 741317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35237176

RESUMEN

In the present study, the effect of long-term exercise training was investigated on myocardial morphological and functional remodeling and on proarrhythmic sensitivity in a rabbit athlete's heart model. New-Zealand white rabbits were trained during a 12-week long treadmill running protocol and compared with their sedentary controls. At the end of the training protocol, echocardiography, in vivo and in vitro ECG recordings, proarrhythmic sensitivity with dofetilide (nM) were performed in isolated hearts, and action potential duration (APD) measurements at different potassium concentrations (4.5 and 2 mM) were made in the isolated papillary muscles. Expression levels of the slow component of delayed rectifier potassium current and fibrosis synthesis and degradation biomarkers were quantified. Echocardiography showed a significantly dilated left ventricle in the running rabbits. ECG PQ and RR intervals were significantly longer in the exercised group (79 ± 2 vs. 69 ± 2 ms and 325 ± 11 vs. 265 ± 6 ms, p < 0.05, respectively). The in vivo heart rate variability (HRV) (SD of root mean square: 5.2 ± 1.4 ms vs. 1.4 ± 0.2 ms, p < 0.05) and Tpeak-Tend variability were higher in the running rabbits. Bradycardia disappeared in the exercised group in vitro. Dofetilide tended to increase the QTc interval in a greater extent, and significantly increased the number of arrhythmic beats in the trained animals in vitro. APD was longer in the exercised group at a low potassium level. Real-time quantitative PCR (RT-qPCR) showed significantly greater messenger RNA expression of fibrotic biomarkers in the exercised group. Increased repolarization variability and higher arrhythmia incidences, lengthened APD at a low potassium level, increased fibrotic biomarker gene expressions may indicate higher sensitivity of the rabbit "athlete's heart" to life-threatening arrhythmias.

7.
Sci Rep ; 10(1): 19596, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177643

RESUMEN

Sudden cardiac death among top athletes is very rare, however, it is 2-4 times more frequent than in the age-matched control population. In the present study, the electrophysiological consequences of long-term exercise training were investigated on Ca2+ homeostasis and ventricular repolarization, together with the underlying alterations of ion channel expression, in a rat athlete's heart model. 12-week swimming exercise-trained and control Wistar rats were used. Electrophysiological data were obtained by using ECG, patch clamp and fluorescent optical measurements. Protein and mRNA levels were determined by the Western immunoblot and qRT-PCR techniques. Animals in the trained group exhibited significantly lower resting heart rate, higher incidence of extrasystoles and spontaneous Ca2+ release events. The Ca2+ content of the sarcoplasmic reticulum (SR) and the Ca2+ transient amplitude were significantly larger in the trained group. Intensive physical training is associated with elevated SR Ca2+ content, which could be an important part of physiological cardiac adaptation mechanism to training. However, it may also sensitize the heart for the development of spontaneous Ca2+ release and extrasystoles. Training-associated remodeling may promote elevated incidence of life threatening arrhythmias in top athletes.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Cardiomegalia Inducida por el Ejercicio/fisiología , Retículo Sarcoplasmático/metabolismo , Animales , Arritmias Cardíacas/etiología , Modelos Animales de Enfermedad , Electrocardiografía , Expresión Génica , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Técnicas de Cultivo de Órganos , Fosforilación , Potasio/metabolismo , Ratas Wistar , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Natación
8.
Br J Pharmacol ; 177(24): 5534-5554, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32959887

RESUMEN

BACKGROUND AND PURPOSE: The lack of selective sodium-calcium exchanger (NCX) inhibitors has hampered the exploration of physiological and pathophysiological roles of cardiac NCX 1.1. We aimed to discover more potent and selective drug like NCX 1.1 inhibitor. EXPERIMENTAL APPROACH: A flavan series-based pharmacophore model was constructed. Virtual screening helped us identify a novel scaffold for NCX inhibition. A distinctively different NCX 1.1 inhibitor, ORM-11372, was discovered after lead optimization. Its potency against human and rat NCX 1.1 and selectivity against other ion channels was assessed. The cardiovascular effects of ORM-11372 were studied in normal and infarcted rats and rabbits. Human cardiac safety was studied ex vivo using human ventricular trabeculae. KEY RESULTS: ORM-11372 inhibited human NCX 1.1 reverse and forward currents; IC50 values were 5 and 6 nM respectively. ORM-11372 inhibited human cardiac sodium 1.5 (INa ) and hERG KV 11.1 currents (IhERG ) in a concentration-dependent manner; IC50 values were 23.2 and 10.0 µM. ORM-11372 caused no changes in action potential duration; short-term variability and triangulation were observed for concentrations of up to 10 µM. ORM-11372 induced positive inotropic effects of 18 ± 6% and 35 ± 8% in anaesthetized rats with myocardial infarctions and in healthy rabbits respectively; no other haemodynamic effects were observed, except improved relaxation at the lowest dose. CONCLUSION AND IMPLICATIONS: ORM-11372, a unique, novel, and potent inhibitor of human and rat NCX 1.1, is a positive inotropic compound. NCX inhibition can induce clinically relevant improvements in left ventricular contractions without affecting relaxation, heart rate, or BP, without pro-arrhythmic risk.


Asunto(s)
Miocitos Cardíacos , Intercambiador de Sodio-Calcio , Potenciales de Acción , Animales , Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Conejos , Ratas , Sodio/metabolismo
9.
J Cardiovasc Pharmacol ; 74(3): 218-224, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31356552

RESUMEN

Relaxation and changes in the transmembrane potential of vascular smooth muscle induced by ORM-3819, a novel inodilating compound, were investigated in isolated porcine coronary arteries. Isometric tone was studied on arterial rings precontracted by KCl (30 mM), and resting membrane potential was investigated by a conventional microelectrode technique. ORM-3819 in the concentration range 0.38-230.6 µM evoked concentration-dependent relaxation with a maximum value of 58.1% and an effective concentration of the relaxing substance that caused 50% of maximum relaxation of 72.2 µM. The maximum hyperpolarization produced by ORM-3819 at a concentration of 120 µM (-2.6 ± 0.81 mV, N = 10) did not differ significantly from that induced by C-type natriuretic peptide (CNP), an endogenous hyperpolarizing mediator, at a concentration of 1.4 µM (-3.6 ± 0.38 mV, N = 17). The same effect elicited by the known inodilator levosimendan was less pronounced at a concentration of 3.7 µM: -1.82 ± 0.44 mV, N = 22 (P < 0.05 vs. CNP). The voltage-gated potassium channel inhibitor 4-aminopyridine, at a concentration of 5 mM, attenuated the relaxation induced by ORM-3819 at concentrations of 41.6 or 117.2 µM. These results suggest that ORM-3819 is a potent vasodilating agent able to relieve coronary artery vasospasm by causing hyperpolarization of vascular smooth muscle cells through processes involving activation of voltage-gated potassium channels.


Asunto(s)
Vasos Coronarios/efectos de los fármacos , Hidrazonas/farmacología , Canales de Potasio con Entrada de Voltaje/agonistas , Piridazinas/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Vasos Coronarios/metabolismo , Técnicas In Vitro , Potenciales de la Membrana , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Péptido Natriurético Tipo-C/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Transducción de Señal , Simendán/farmacología , Sus scrofa
10.
Front Pharmacol ; 10: 1632, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32063850

RESUMEN

BACKGROUND AND PURPOSE: The exact mechanism of spontaneous pacemaking is not fully understood. Recent results suggest tight cooperation between intracellular Ca2+ handling and sarcolemmal ion channels. An important player of this crosstalk is the Na+/Ca2+ exchanger (NCX), however, direct pharmacological evidence was unavailable so far because of the lack of a selective inhibitor. We investigated the role of the NCX current in pacemaking and analyzed the functional consequences of the If-NCX coupling by applying the novel selective NCX inhibitor ORM-10962 on the sinus node (SAN). EXPERIMENTAL APPROACH: Currents were measured by patch-clamp, Ca2+-transients were monitored by fluorescent optical method in rabbit SAN cells. Action potentials (AP) were recorded from rabbit SAN tissue preparations. Mechanistic computational data were obtained using the Yaniv et al. SAN model. KEY RESULTS: ORM-10962 (ORM) marginally reduced the SAN pacemaking cycle length with a marked increase in the diastolic Ca2+ level as well as the transient amplitude. The bradycardic effect of NCX inhibition was augmented when the funny-current (If) was previously inhibited and vice versa, the effect of If was augmented when the Ca2+ handling was suppressed. CONCLUSION AND IMPLICATIONS: We confirmed the contribution of the NCX current to cardiac pacemaking using a novel NCX inhibitor. Our experimental and modeling data support a close cooperation between If and NCX providing an important functional consequence: these currents together establish a strong depolarization capacity providing important safety factor for stable pacemaking. Thus, after individual inhibition of If or NCX, excessive bradycardia or instability cannot be expected because each of these currents may compensate for the reduction of the other providing safe and rhythmic SAN pacemaking.

11.
Rev Cardiovasc Med ; 19(4): 135-142, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31064165

RESUMEN

Sudden cardiac death in athletes is rare and most often unexpectable. For a better understanding of cardiac remodeling, this study presents the effects of chronic vigorous exercise on cardiac structure and electrophysiology in new rabbit and dog athlete's heart models. Rabbits and dogs were randomized into sedentary ('Sed'), exercised (subjected to 16 weeks chronic treadmill exercise ('Ex') groups, and a testosterone-treated ('Dop') group in dogs. Echocardiography and electrocardiogram were performed. Proarrhythmic sensitivity and autonomic responses were tested in conscious dogs. 'Ex' animals exhibited left ventricular enlargement with bradycardia (mean RR in 'Ex' vs. 'Sed' rabbits: 335 ± 15 vs. 288 ±19 ms, p ≤ 0.05, and in 'Dop' vs. 'Ex' vs. 'Sed' dogs: 718 ± 6 vs. 638 ± 38 vs. 599 ± 49 ms) accompanied by an increase of heart rate variability in both species (e.g. SD RR in 'Ex' vs. 'Sed' rabbits: 3.4 ± 0.9 vs. 1.4 ± 0.1 ms, p ≤ 0.05, and in 'Dop' vs. 'Ex' vs. 'Sed' dogs: 156 ± 59 vs. 163 ± 44 vs. 111 ± 49 ms) indicating an increased vagal tone. A lower response to parasympatholytic agent atropine and more pronounced QTc interval lengthening after dofetilide challenge were found in 'Ex' and 'Dop' dogs compared to the 'Sed' group. No morphological and functional changes were found after chronic steroid treatment in dogs. The structural-functional findings share more similarities with human athlete's heart. Slight repolarization sensitivity in the exercised dogs may indicate an increased risk of arrhythmias in athletes under different circumstances. These animal models might be useful for the further investigations of the cardiovascular effects of competitive training.


Asunto(s)
Cardiomegalia Inducida por el Ejercicio , Frecuencia Cardíaca , Corazón/fisiología , Condicionamiento Físico Animal , Resistencia Física , Función Ventricular Izquierda , Remodelación Ventricular , Adaptación Fisiológica , Andrógenos/farmacología , Animales , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Perros , Ecocardiografía , Electrocardiografía , Femenino , Corazón/diagnóstico por imagen , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Masculino , Modelos Animales , Conejos , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
12.
Eur J Pharmacol ; 818: 278-286, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29066415

RESUMEN

Na+/Ca2+ exchanger (NCX) is the main Ca2+ transporter in cardiac myocytes. Its inhibition could be expected to exert positive inotropic action by accumulation of cytosolic Ca2+ ([Ca2+]i). However, we have observed only a marginal positive inotropic effect upon selective inhibition of NCX, which was enhanced when forward activity was facilitated. Here we attempted to clarify the underlying mechanism of the limited inotropic action of selective NCX inhibition by a novel inhibitor ORM-10962 on canine ventricular myocytes. 1µM ORM-10962 reduced the Ca2+ content of sarcoplasmic reticulum (SR) when the reverse NCX was favoured, while SR Ca2+ content was increased by ORM-10962 under conditions favouring the forward activity, like elevation of [Ca2+]i. L-type Ca2+ current (ICa) was not affected by 1µM ORM-10962 in the absence of SR Ca2+ release, while ICa was suppressed by ORM-10962 during normal Ca2+ cycling. The apparent degree of forward NCX inhibition was dependent on the elevation of [Ca2+]i, suggesting that an increased driving force of forward NCX can also limit the accumulation of [Ca2+i]. We concluded that in healthy myocardium the possible positive inotropic potential of NCX inhibition is considerably weaker than it was expected earlier by theoretical assumptions. The underlying mechanism may involve the autoregulation of Ca2+ handling and/or the preserved inducibility of forward NCX by high [Ca2+]i. This limitation of selective NCX inhibition seen in undiseased myocardium requires further studies in failing heart, which may allow correct evaluation of the potential therapeutic value of selective NCX inhibitors in the treatment of heart failure.


Asunto(s)
Acetamidas/farmacología , Cromanos/farmacología , Ventrículos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Piperidinas/farmacología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Animales , Calcio/metabolismo , Perros , Fenómenos Electrofisiológicos/efectos de los fármacos , Femenino , Masculino , Miocitos Cardíacos/citología , Retículo Sarcoplasmático/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-28659867

RESUMEN

Prediabetic states and diabetes are important risk factors for cardiovascular morbidity and mortality. Determination of short-term QT interval variability (STVQT) is a non-invasive method for assessment of proarrhythmic risk. The aim of the study was to evaluate the STVQT in patients with impaired glucose tolerance (IGT). 18 IGT patients [age: 63 ± 11 years, body mass index (BMI): 31 ± 6 kg/m2, fasting glucose: 6.0 ± 0.4 mmol/l, 120 min postload glucose: 9.0 ± 1.0 mmol/l, hemoglobin A1c (HbA1c): 5.9 ± 0.4%; mean ± SD] and 18 healthy controls (age: 56 ± 9 years, BMI: 27 ± 5 kg/m2, fasting glucose: 5.2 ± 0.4 mmol/l, 120 min postload glucose: 5.5 ± 1.3 mmol/l, HbA1c: 5.4 ± 0.3%) were enrolled into the study. ECGs were recorded, processed, and analyzed off-line. The RR and QT intervals were expressed as the average of 30 consecutive beats, the temporal instability of beat-to-beat repolarization was characterized by calculating STVQT as follows: STVQT = Σ|QTn + 1 - QTn| (30x√2)-1. Autonomic function was assessed by means of standard cardiovascular reflex tests. There were no differences between IGT and control groups in QT (411 ± 43 vs 402 ± 39 ms) and QTc (431 ± 25 vs 424 ± 19 ms) intervals or QT dispersion (44 ± 13 vs 42 ± 17 ms). However, STVQT was significantly higher in IGT patients (5.0 ± 0.7 vs 3.7 ± 0.7, P < 0.0001). The elevated temporal STVQT in patients with IGT may be an early indicator of increased instability of cardiac repolarization during prediabetic conditions.

14.
Can J Physiol Pharmacol ; 95(7): 830-836, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28226224

RESUMEN

Racemic mexiletine is a widely used antiarrhythmic agent that blocks sodium channels. The effects of R-(-) and S-(+) mexiletine stereoisomers on maximum rate of depolarization ([Formula: see text]), conduction time, and repolarization have not yet been investigated in isolated cardiac preparations. We studied the effect of the R-(-) and S-(+) mexiletine on rabbit cardiac action potential parameters by using the conventional microelectrode technique. Both enantiomers at 20 µmol/L of therapeutically and experimentally relevant concentration, significantly depressed the [Formula: see text] at fast heart rates (BCLs 300-700 ms). R-(-) mexiletine has more potent inhibitory effect than S-(+) mexiletine. Both R-(-) and S-(+) mexiletine significantly inhibited the [Formula: see text] of early extrasystoles measured at 70 ms diastolic interval induced by S1-S2 stimuli. R-(-) mexiletine has more pronounced inhibitory effect than S-(+) mexiletine. Both R-(-) and S-(+) mexiletine increased significantly the ERP/APD90 ratio. The time constant (τ) of recovery of [Formula: see text] was found to be τ = 376.0 ± 77.8 ms for R-(-) mexiletine and τ = 227.1 ± 23.4 ms for S-(+) mexiletine, which indicates a slower offset kinetics for R-(-) mexiletine from sodium channels than that of the S-(+) enantiomer. These data suggest that R-(-) mexiletine might be a more potent antiarrhythmic agent than S-(+) mexiletine.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Mexiletine/química , Mexiletine/farmacología , Rotación , Animales , Masculino , Potenciales de la Membrana/efectos de los fármacos , Conejos , Estereoisomerismo
15.
PLoS One ; 11(11): e0166041, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832106

RESUMEN

BACKGROUND: In this study the effects of a new, highly selective sodium-calcium exchanger (NCX) inhibitor, ORM-10962 were investigated on cardiac NCX current, Ca2+ transients, cell shortening and in experimental arrhythmias. The level of selectivity of the novel inhibitor on several major transmembrane ion currents (L-type Ca2+ current, major repolarizing K+ currents, late Na+ current, Na+/K+ pump current) was also determined. METHODS: Ion currents in single dog ventricular cells (cardiac myocytes; CM), and action potentials in dog cardiac multicellular preparations were recorded utilizing the whole-cell patch clamp and standard microelectrode techniques, respectively. Ca2+ transients and cell shortening were measured in fluorescent dye loaded isolated dog myocytes. Antiarrhythmic effects of ORM-10962 were studied in anesthetized ouabain (10 µg/kg/min i.v.) pretreated guinea pigs and in ischemia-reperfusion models (I/R) of anesthetized coronary artery occluded rats and Langendorff perfused guinea pigs hearts. RESULTS: ORM-10962 significantly reduced the inward/outward NCX currents with estimated EC50 values of 55/67 nM, respectively. The compound, even at a high concentration of 1 µM, did not modify significantly the magnitude of ICaL in CMs, neither had any apparent influence on the inward rectifier, transient outward, the rapid and slow components of the delayed rectifier potassium currents, the late and peak sodium and Na+/K+ pump currents. NCX inhibition exerted moderate positive inotropic effect under normal condition, negative inotropy when reverse, and further positive inotropic effect when forward mode was facilitated. In dog Purkinje fibres 1 µM ORM-10962 decreased the amplitude of digoxin induced delayed afterdepolarizations (DADs). Pre-treatment with 0.3 mg/kg ORM-10962 (i.v.) 10 min before starting ouabain infusion significantly delayed the development and recurrence of ventricular extrasystoles (by about 50%) or ventricular tachycardia (by about 30%) in anesthetized guinea pigs. On the contrary, ORM-10962 pre-treatment had no apparent influence on the time of onset or the severity of I/R induced arrhythmias in anesthetized rats and in Langendorff perfused guinea-pig hearts. CONCLUSIONS: The present study provides strong evidence for a high efficacy and selectivity of the NCX-inhibitory effect of ORM-10962. Selective NCX inhibition can exert positive as well as negative inotropic effect depending on the actual operation mode of NCX. Selective NCX blockade may contribute to the prevention of DAD based arrhythmogenesis, in vivo, however, its effect on I/R induced arrhythmias is still uncertain.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/química , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Animales , Antiarrítmicos/farmacología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Calcio/metabolismo , Células Cultivadas , Perros , Descubrimiento de Drogas , Cobayas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Intercambiador de Sodio-Calcio/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-27063345

RESUMEN

INTRODUCTION: Preclinical in vivo QT measurement as a proarrhythmia essay is expensive and not reliable enough. The aim of the present study was to develop a sensitive, cost-effective, Langendorff perfused guinea pig heart model for proarrhythmia safety screening. METHODS: Low concentrations of dofetilide and cisapride (inhibitors of the rapid delayed rectifier potassium current, IKr) were tested alone and co-perfused with HMR-1556 (inhibitor of the slow delayed rectifier potassium current, IKs) in Langendorff perfused guinea pig hearts. The electrocardiographic rate corrected QT (QTc) interval, the Tpeak-Tend interval and the beat-to-beat variability and instability (BVI) of the QT interval were determined in sinus rhythm. RESULTS: Dofetilide and HMR-1556 alone or co-perfused, prolonged the QTc interval by 20±2%, 10±1% and 55±10%, respectively. Similarly, cisapride and HMR-1556 alone or co-perfused, prolonged the QTc interval by 11±3%, 11±4% and 38±6%, respectively. Catecholamine-induced fast heart rate abolished the QTc prolonging effects of the IKr inhibitors, but augmented the QTc prolongation during IKs inhibition. None of the drug perfusions increased significantly the Tpeak-Tend interval and the sinus BVI of the QT interval. DISCUSSION: IKs inhibition increased the QTc prolonging effect of IKr inhibitors in a super-additive (synergistic) manner, and the QTc interval was superior to other proarrhythmia biomarkers measured in sinus rhythm in isolated guinea pig hearts. The effect of catecholamines on the QTc facilitated differentiation between IKr and IKs inhibitors. Thus, QTc measurement in Langendorff perfused guinea pig hearts with pharmacologically attenuated repolarization reserve and periodic catecholamine perfusion seems to be suitable for preclinical proarrhythmia screening.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Evaluación Preclínica de Medicamentos/métodos , Corazón/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Bloqueadores de los Canales de Potasio/toxicidad , Animales , Catecolaminas/farmacología , Cromanos/toxicidad , Cisaprida/toxicidad , Circulación Coronaria/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Interacciones Farmacológicas , Electrocardiografía/efectos de los fármacos , Femenino , Cobayas , Frecuencia Cardíaca/efectos de los fármacos , Técnicas In Vitro , Fenetilaminas/toxicidad , Sulfonamidas/toxicidad , Torsades de Pointes/inducido químicamente
17.
Eur J Pharmacol ; 775: 120-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26872993

RESUMEN

This study is the first pharmacological characterization of the novel chemical entity, ORM-3819 (L-6-{4-[N'-(4-Hydroxi-3-methoxy-2-nitro-benzylidene)-hydrazino]-phenyl}-5-methyl-4,5-dihydro-2H-pyridazin-3-one), focusing primarily on its cardiotonic effects. ORM-3819 binding to cardiac troponin C (cTnC) was confirmed by nuclear magnetic resonance spectroscopy, and a selective inhibition of the phosphodiesterase III (PDE III) isozyme (IC50=3.88±0.3 nM) was revealed during in vitro enzyme assays. The Ca(2+)-sensitizing effect of ORM-3819 was demonstrated in vitro in permeabilized myocyte-sized preparations from left ventricles (LV) of guinea pig hearts (ΔpCa50=0.12±0.01; EC50=2.88±0.14 µM). ORM-3819 increased the maximal rate of LV pressure development (+dP/dtmax) (EC50=8.9±1.7 nM) and LV systolic pressure (EC50=7.63±1.74 nM) in Langendorff-perfused guinea pig hearts. Intravenous administration of ORM-3819 increased LV+dP/dtmax (EC50=0.13±0.05 µM/kg) and improved the rate of LV pressure decrease (-dP/dtmax); (EC50=0.03±0.02 µM/kg) in healthy guinea pigs. In an in vivo dog model of myocardial stunning, ORM-3819 restored the depressed LV+dP/dtmax and improved % segmental shortening (%SS) in the ischemic area (to 18.8±3), which was reduced after the ischaemia-reperfusion insult (from 24.1±2.1 to 11.0±2.4). Our data demonstrate ORM-3819 as a potent positive inotropic agent exerting its cardiotonic effect by a cTnC-dependent Ca(2+)-sensitizing mechanism in combination with the selective inhibition of the PDE III isozyme. This dual mechanism of action results in the concentration-dependent augmentation of the contractile performance under control conditions and in the postischemic failing myocardium.


Asunto(s)
Cardiotónicos/farmacología , Hidrazonas/farmacología , Contracción Miocárdica/efectos de los fármacos , Inhibidores de Fosfodiesterasa 3/farmacología , Piridazinas/farmacología , Animales , Calcio/fisiología , Perros , Femenino , Cobayas , Ventrículos Cardíacos/citología , Técnicas In Vitro , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Troponina C/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
18.
Artículo en Inglés | MEDLINE | ID: mdl-26455880

RESUMEN

INTRODUCTION: Heart rate affects coronary flow, but the mechanism is complex. The relationship between rhythm and flow is unclear, especially in experimental settings used for determining drug actions. The present study examined whether ventricular irregularity influences coronary flow independently of heart rate. METHODS: Guinea pig hearts were perfused (Langendorff mode) at constant pressure. Hypokalemic Krebs solution facilitated spontaneous development of arrhythmias. The ECG, left ventricular and perfusion pressures were recorded, and the coronary flow was measured. Beat-to-beat ventricular cycle length variability was quantified. Hearts were retrospectively allocated to arbitrary 'Low' or 'High' RR variability groups. RESULTS: A positive linear correlation was found between mean ventricular rate and coronary flow. The slope of the regression line was significantly greater in the 'High' versus 'Low' RR variability group, with greater coronary flow values in the 'High' RR variability group in the physiological heart rate range. During regular rhythm, left ventricular pressure exceeded perfusion pressure and prevented coronary perfusion at peak systole. However, ventricular irregularity significantly increased the number of beats in which left ventricular pressure remained below perfusion pressure, facilitating coronary perfusion. DISCUSSION: In isolated hearts, cycle length irregularity increases the slope of the positive linear correlation between mean ventricular rate and coronary flow via producing beats in which left ventricular pressure remains below perfusion pressure. This means that changes in rhythm have the capacity to influence coronary flow independently of heart rate in isolated hearts perfused at constant pressure, which should be noted in drug studies on arrhythmias performed in Langendorff hearts.


Asunto(s)
Circulación Coronaria/fisiología , Frecuencia Cardíaca/fisiología , Ventrículos Cardíacos/fisiopatología , Animales , Arritmias Cardíacas/fisiopatología , Femenino , Cobayas , Contracción Miocárdica/fisiología , Consumo de Oxígeno/fisiología , Perfusión/métodos
19.
Can J Physiol Pharmacol ; 93(9): 765-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26313025

RESUMEN

Stratification models for the prediction of sudden cardiac death (SCD) are inappropriate in patients with hypertrophic cardiomyopathy (HCM). We investigated conventional electrocardiogram (ECG) repolarization parameters and the beat-to-beat short-term QT interval variability (QT-STV), a new parameter of proarrhythmic risk, in 37 patients with HCM (21 males, average age 48 ± 15 years). Resting ECGs were recorded for 5 min and the frequency corrected QT interval (QTc), QT dispersion (QTd), beat-to-beat short-term variability of QT interval (QT-STV), and the duration of terminal part of T waves (Tpeak-Tend) were calculated. While all repolarization parameters were significantly increased in patients with HCM compared with the controls (QTc, 488 ± 61 vs. 434 ± 23 ms, p < 0.0001; QT-STV, 4.5 ± 2 vs. 3.2 ± 1 ms, p = 0.0002; Tpeak-Tend duration, 107 ± 27 vs. 91 ± 10 ms, p = 0.0015; QTd, 47 ± 17 vs. 34 ± 9 ms, p = 0.0002), QT-STV had the highest relative increase (+41%). QT-STV also showed the best correlation with indices of left ventricular (LV) hypertrophy, i.e., maximal LV wall thickness normalized for body surface area (BSA; r = 0.461, p = 0.004) or LV mass (determined by cardiac magnetic resonance imaging) normalized for BSA (r = 0.455, p = 0.015). In summary, beat-to-beat QT-STV showed the most marked increase in patients with HCM and may represent a novel marker that merits further testing for increased SCD risk in HCM.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Cardiomiopatía Hipertrófica/fisiopatología , Electrocardiografía , Hipertrofia Ventricular Izquierda/fisiopatología , Adulto , Arritmias Cardíacas/complicaciones , Cardiomiopatía Hipertrófica/complicaciones , Estudios de Casos y Controles , Ecocardiografía , Femenino , Humanos , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/patología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
20.
Can J Physiol Pharmacol ; 93(9): 773-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26176275

RESUMEN

The aim of this investigation was to compare the effectiveness of long-term pretreatment with amiodarone (AMIO) and its active metabolite desethylamiodarone (DEA) on arrhythmias induced by acute myocardial infarction in rats. Acute myocardial infarction was induced in conscious, male, Sprague-Dawley rats by pulling a previously inserted loose silk loop around the left main coronary artery. Long-term oral pretreatment with AMIO (30 or 100 mg·(kg body mass)(-1)·day(-1), loading dose 100 or 300 mg·kg(-1) for 3 days) or DEA (15 or 50 mg·kg(-1)·day(-1), loading dose 100 or 300 mg·kg(-1) for 3 days), was applied for 1 month before the coronary artery occlusion. Chronic oral treatment with DEA (50 mg·kg(-1)·day(-1)) resulted in a similar myocardial DEA concentration as chronic AMIO treatment (100 mg·kg(-1)·day(-1)) in rats (7.4 ± 0.7 µg·g(-1) and 8.9 ± 2.2 µg·g(-1)). Both pretreatments in the larger doses significantly improved the survival rate during the acute phase of experimental myocardial infarction (82% and 64% by AMIO and DEA, respectively, vs. 31% in controls). Our results demonstrate that chronic oral treatment with DEA resulted in similar cardiac tissue levels to that of chronic AMIO treatment, and offered an equivalent degree of antiarrhythmic effect against acute coronary artery ligation induced ventricular arrhythmias in conscious rats.


Asunto(s)
Amiodarona/análogos & derivados , Amiodarona/farmacología , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/prevención & control , Estado de Conciencia , Oclusión Coronaria/complicaciones , Amiodarona/administración & dosificación , Amiodarona/sangre , Amiodarona/farmacocinética , Animales , Antiarrítmicos/administración & dosificación , Antiarrítmicos/sangre , Antiarrítmicos/farmacocinética , Antiarrítmicos/farmacología , Cardiotónicos/farmacología , Masculino , Miocardio/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...