Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 55(Pt 5): 1072-1084, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36249505

RESUMEN

A novel spin echo small-angle neutron scattering (SESANS) concept based on a rotationally symmetric magnetic field geometry is introduced. The proposed method is similar to the conventional linear SESANS technique but uses longitudinal precession fields and field gradients in a radial direction, as typically found in neutron spin echo (NSE) spectrometers. Radial SESANS could thus be implemented as an add-on to NSE setups. The neutron trajectory through the instrument is encoded with the help of radial gradients generated by radial shifters, which are coils placed in the beam area similar to Fresnel coils. The present work introduces the setup of the instrument and explores its performance and the relationship between the encoded momentum transfer and the precession angle. The results indicate that radial SESANS is only sensitive to scattering along the radial direction and thus measures the projected correlation function along this direction as a function of the spin echo length, defined similarly to linear SESANS. For an evaluation of the performance of the setup, the case of scattering from solid spheres is considered and the results calculated for the radial and linear SESANS cases are compared. Also discussed is the implementation of the radial magnetic field geometry in spin echo modulated small-angle neutron scattering.

2.
Sci Adv ; 4(9): eaat7323, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255145

RESUMEN

The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex noncollinear spin orders through interactions of a relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram composed of helical spiral, conical spiral, and skyrmion crystal phases. We report a remarkable deviation from this universal behavior. By combining neutron diffraction with magnetization measurements, we observe a new multidomain state in Cu2OSeO3. Just below the upper critical field at which the conical spiral state disappears, the spiral wave vector rotates away from the magnetic field direction. This transition gives rise to large magnetic fluctuations. We clarify the physical origin of the new state and discuss its multiferroic properties.

3.
Sci Rep ; 5: 16576, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26560644

RESUMEN

Neutron dark-field imaging constitutes a seminal progress in the field of neutron imaging as it combines real space resolution capability with information provided by one of the most significant neutron scattering techniques, namely small angle scattering. The success of structural characterizations bridging the gap between macroscopic and microscopic features has been enabled by the introduction of grating interferometers so far. The induced interference pattern, a spatial beam modulation, allows for mapping of small-angle scattering signals and hence addressing microstructures beyond direct spatial resolution of the imaging system with high efficiency. However, to date the quantification in the small angle scattering regime is severely limited by the monochromatic approach. To overcome such drawback we here introduce an alternative and more flexible method of interferometric beam modulation utilizing a spin-echo technique. This novel method facilitates straightforward quantitative dark-field neutron imaging, i.e. the required quantitative microstructural characterization combined with real space image resolution. For the first time quantitative microstructural reciprocal space information from small angle neutron scattering becomes available together with macroscopic image information creating the potential to quantify several orders of magnitude in structure sizes simultaneously.

4.
Rev Sci Instrum ; 80(9): 095105, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19791962

RESUMEN

This paper describes the design and experimental tests of a novel neutron spin analyzer optimized for wide angle spin echo spectrometers. The new design is based on nonremanent magnetic supermirrors, which are magnetized by vertical magnetic fields created by NdFeB high field permanent magnets. The solution presented here gives stable performance at moderate costs in contrast to designs invoking remanent supermirrors. In the experimental part of this paper we demonstrate that the new design performs well in terms of polarization, transmission, and that high quality neutron spin echo spectra can be measured.

5.
J Phys Chem B ; 113(25): 8469-74, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19485359

RESUMEN

We present results from complementary characterizations of the primary relaxation rate of a room temperature ionic liquid (RTIL), 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} imide, [C6mim][Tf2N], over a wide temperature range. This extensive data set is successfully merged with existing literature data for conductivity, viscosity, and NMR diffusion coefficients thus providing, for the case of RTILs, a unique description of the primary process relaxation map over more than 12 decades in relaxation rate and between 185 and 430 K. This unique data set allows a detailed characterization of the VTF parameters for the primary process, that are: B=890 K, T0=155.2 K, leading to a fragility index m=71, corresponding to an intermediate fragility. For the first time neutron spin echo data from a fully deuteriated sample of RTIL at the two main interference peaks, Q=0.76 and 1.4 A(-1) are presented. At high temperature (T>250 K), the collective structural relaxation rate follows the viscosity behavior; however at lower temperatures it deviates from the viscosity behavior, indicating the existence of a faster process.

6.
J Synchrotron Radiat ; 9(Pt 4): 210-4, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12091728

RESUMEN

Nuclear resonant scattering of synchrotron radiation and quasielastic neutron scattering allow the measurement of frequencies, directions and lengths of jumps of diffusing atoms. Both methods have been successfully applied to diffusion in solids. Synergies and respective advantages of these two techniques as well as recent developments are discussed on the basis of an example: diffusion in intermetallic alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...