Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(5): e1011279, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748723

RESUMEN

The leiomodin (Lmod) family of actin-binding proteins play a critical role in muscle function, highlighted by the fact that mutations in all three family members (LMOD1-3) result in human myopathies. Mutations in the cardiac predominant isoform, LMOD2 lead to severe neonatal dilated cardiomyopathy. Most of the disease-causing mutations in the LMOD gene family are nonsense, or frameshift, mutations predicted to result in expression of truncated proteins. However, in nearly all cases of disease, little to no LMOD protein is expressed. We show here that nonsense-mediated mRNA decay, a cellular mechanism which eliminates mRNAs with premature termination codons, underlies loss of mutant protein from two independent LMOD2 disease-causing mutations. Furthermore, we generated steric-blocking oligonucleotides that obstruct deposition of the exon junction complex, preventing nonsense-mediated mRNA decay of mutant LMOD2 transcripts, thereby restoring mutant protein expression. Our investigation lays the initial groundwork for potential therapeutic intervention in LMOD-linked myopathies.

2.
Sci Adv ; 10(11): eadk1890, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478604

RESUMEN

Muscle contraction is a regulated process driven by the sliding of actin-thin filaments over myosin-thick filaments. Lmod2 is an actin filament length regulator and essential for life since human mutations and complete loss of Lmod2 in mice lead to dilated cardiomyopathy and death. To study the little-known role of Lmod2 in skeletal muscle, we created a mouse model with Lmod2 expressed exclusively in the heart but absent in skeletal muscle. Loss of Lmod2 in skeletal muscle results in decreased force production in fast- and slow-twitch muscles. Soleus muscle from rescued Lmod2 knockout mice have shorter thin filaments, increased Lmod3 levels, and present with a myosin fiber type switch from fast myosin heavy chain (MHC) IIA to the slower MHC I isoform. Since Lmod2 regulates thin-filament length in slow-twitch but not fast-twitch skeletal muscle and force deficits were observed in both muscle types, this work demonstrates that Lmod2 regulates skeletal muscle contraction, independent of its role in thin-filament length regulation.


Asunto(s)
Contracción Muscular , Sarcómeros , Animales , Humanos , Ratones , Proteínas del Citoesqueleto/genética , Corazón , Ratones Noqueados , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Miosinas
3.
Eur J Hum Genet ; 30(4): 450-457, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35082396

RESUMEN

Dilated cardiomyopathy (DCM) is characterized by cardiac enlargement and impaired ventricular contractility leading to heart failure. A single report identified variants in leiomodin-2 (LMOD2) as a cause of neonatally-lethal DCM. Here, we describe two siblings with DCM who died shortly after birth due to heart failure. Exome sequencing identified a homozygous LMOD2 variant in both siblings, (GRCh38)chr7:g.123656237G > A; NM_207163.2:c.273 + 1G > A, ablating the donor 5' splice-site of intron-1. Pre-mRNA splicing studies and western blot analysis on cDNA derived from proband cardiac tissue, MyoD-transduced proband skin fibroblasts and HEK293 cells transfected with LMOD2 gene constructs established variant-associated absence of canonically spliced LMOD2 mRNA and full-length LMOD2 protein. Immunostaining of proband heart tissue unveiled abnormally short actin-thin filaments. Our data are consistent with LMOD2 c.273 + 1G > A abolishing/reducing LMOD2 transcript expression by: (1) variant-associated perturbation in initiation of transcription due to ablation of the intron-1 donor; and/or (2) degradation of aberrant LMOD2 transcripts (resulting from use of alternative transcription start-sites or cryptic splice-sites) by nonsense-mediated decay. LMOD2 expression is critical for life and the absence of LMOD2 is associated with thin filament shortening and severe cardiac contractile dysfunction. This study describes the first splice-site variant in LMOD2 and confirms the role of LMOD2 variants in DCM.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Cardiomiopatía Dilatada/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Homocigoto , Humanos , Recién Nacido
4.
PLoS One ; 15(1): e0226138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31899774

RESUMEN

A novel cardiac-specific transgenic mouse model was generated to identify the physiological consequences of elongated thin filaments during post-natal development in the heart. Remarkably, increasing the expression levels in vivo of just one sarcomeric protein, Lmod2, results in ~10% longer thin filaments (up to 26% longer in some individual sarcomeres) that produce up to 50% less contractile force. Increasing the levels of Lmod2 in vivo (Lmod2-TG) also allows us to probe the contribution of Lmod2 in the progression of cardiac myopathy because Lmod2-TG mice present with a unique cardiomyopathy involving enlarged atrial and ventricular lumens, increased heart mass, disorganized myofibrils and eventually, heart failure. Turning off of Lmod2 transgene expression at postnatal day 3 successfully prevents thin filament elongation, as well as gross morphological and functional disease progression. We show here that Lmod2 has an essential role in regulating cardiac contractile force and function.


Asunto(s)
Citoesqueleto de Actina/patología , Cardiomiopatías/fisiopatología , Proteínas del Citoesqueleto/fisiología , Insuficiencia Cardíaca/etiología , Proteínas Musculares/fisiología , Músculo Esquelético/patología , Sarcómeros/patología , Animales , Animales Recién Nacidos , Femenino , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Transgénicos , Contracción Muscular
5.
Sci Adv ; 5(9): eaax2066, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31517052

RESUMEN

Neonatal heart failure is a rare, poorly-understood presentation of familial dilated cardiomyopathy (DCM). Exome sequencing in a neonate with severe DCM revealed a homozygous nonsense variant in leiomodin 2 (LMOD2, p.Trp398*). Leiomodins (Lmods) are actin-binding proteins that regulate actin filament assembly. While disease-causing mutations in smooth (LMOD1) and skeletal (LMOD3) muscle isoforms have been described, the cardiac (LMOD2) isoform has not been previously associated with human disease. Like our patient, Lmod2-null mice have severe early-onset DCM and die before weaning. The infant's explanted heart showed extraordinarily short thin filaments with isolated cardiomyocytes displaying a large reduction in maximum calcium-activated force production. The lack of extracardiac symptoms in Lmod2-null mice, and remarkable morphological and functional similarities between the patient and mouse model informed the decision to pursue cardiac transplantation in the patient. To our knowledge, this is the first report of aberrant cardiac thin filament assembly associated with human cardiomyopathy.


Asunto(s)
Citoesqueleto de Actina , Cardiomiopatía Dilatada , Codón sin Sentido , Proteínas del Citoesqueleto , Proteínas Musculares , Miocardio , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Mutantes , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Miocardio/patología
6.
Mol Biol Cell ; 30(2): 268-281, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30462572

RESUMEN

Missense mutations K15N and R21H in striated muscle tropomyosin are linked to dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Tropomyosin, together with the troponin complex, regulates muscle contraction and, along with tropomodulin and leiomodin, controls the uniform thin-filament lengths crucial for normal sarcomere structure and function. We used Förster resonance energy transfer to study effects of the tropomyosin mutations on the structure and kinetics of the cardiac troponin core domain associated with the Ca2+-dependent regulation of cardiac thin filaments. We found that the K15N mutation desensitizes thin filaments to Ca2+ and slows the kinetics of structural changes in troponin induced by Ca2+ dissociation from troponin, while the R21H mutation has almost no effect on these parameters. Expression of the K15N mutant in cardiomyocytes decreases leiomodin's thin-filament pointed-end assembly but does not affect tropomodulin's assembly at the pointed end. Our in vitro assays show that the R21H mutation causes a twofold decrease in tropomyosin's affinity for F-actin and affects leiomodin's function. We suggest that the K15N mutation causes DCM by altering Ca2+-dependent thin-filament regulation and that one of the possible HCM-causing mechanisms by the R21H mutation is through alteration of leiomodin's function.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cardiomiopatías/genética , Mutación/genética , Tropomiosina/genética , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Humanos , Hidrólisis , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
7.
J Mol Cell Cardiol ; 122: 88-97, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30102883

RESUMEN

Leiomodin-2 (Lmod2) is a striated muscle-specific actin binding protein that is implicated in assembly of thin filaments. The necessity of Lmod2 in the adult mouse and role it plays in the mechanics of contraction are unknown. To answer these questions, we generated cardiac-specific conditional Lmod2 knockout mice (cKO). These mice die within a week of induction of the knockout with severe left ventricular systolic dysfunction and little change in cardiac morphology. Cardiac trabeculae isolated from cKO mice have a significant decrease in maximum force production and a blunting of myofilament length-dependent activation. Thin filaments are non-uniform and substantially reduced in length in cKO hearts, affecting the functional overlap of the thick and thin filaments. Remarkably, we also found that Lmod2 levels are directly linked to thin filament length and cardiac function in vivo, with a low amount (<20%) of Lmod2 necessary to maintain cardiac function. Thus, Lmod2 plays an essential role in maintaining proper cardiac thin filament length in adult mice, which in turn is necessary for proper generation of contractile force. Dysregulation of thin filament length in the absence of Lmod2 contributes to heart failure.


Asunto(s)
Proteínas del Citoesqueleto/genética , Insuficiencia Cardíaca/genética , Contracción Muscular/genética , Proteínas Musculares/genética , Miofibrillas/patología , Análisis de Varianza , Animales , Calcio/metabolismo , Ecocardiografía , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/patología , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Sarcómeros/patología , Disfunción Ventricular Izquierda/diagnóstico por imagen
8.
Proc Natl Acad Sci U S A ; 114(45): 11956-11961, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078393

RESUMEN

Small heat shock protein HSPB7 is highly expressed in the heart. Several mutations within HSPB7 are associated with dilated cardiomyopathy and heart failure in human patients. However, the precise role of HSPB7 in the heart is still unclear. In this study, we generated global as well as cardiac-specific HSPB7 KO mouse models and found that loss of HSPB7 globally or specifically in cardiomyocytes resulted in embryonic lethality before embryonic day 12.5. Using biochemical and cell culture assays, we identified HSPB7 as an actin filament length regulator that repressed actin polymerization by binding to monomeric actin. Consistent with HSPB7's inhibitory effects on actin polymerization, HSPB7 KO mice had longer actin/thin filaments and developed abnormal actin filament bundles within sarcomeres that interconnected Z lines and were cross-linked by α-actinin. In addition, loss of HSPB7 resulted in up-regulation of Lmod2 expression and mislocalization of Tmod1. Furthermore, crossing HSPB7 null mice into an Lmod2 null background rescued the elongated thin filament phenotype of HSPB7 KOs, but double KO mice still exhibited formation of abnormal actin bundles and early embryonic lethality. These in vivo findings indicated that abnormal actin bundles, not elongated thin filament length, were the cause of embryonic lethality in HSPB7 KOs. Our findings showed an unsuspected and critical role for a specific small heat shock protein in directly modulating actin thin filament length in cardiac muscle by binding monomeric actin and limiting its availability for polymerization.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cardiomiopatías/genética , Proteínas de Choque Térmico HSP27/genética , Cardiopatías Congénitas/genética , Corazón/embriología , Citoesqueleto de Actina/genética , Animales , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Miocardio/citología , Miocitos Cardíacos/citología , Organogénesis/genética , Sarcómeros/metabolismo , Tropomodulina/metabolismo
9.
Mol Biol Cell ; 27(16): 2565-75, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307584

RESUMEN

Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2-knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43-90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124-201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly-merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Pollos , Proteínas del Citoesqueleto/genética , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Miocitos Cardíacos/metabolismo , Unión Proteica , Dominios Proteicos , Sarcómeros/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Tropomiosina/metabolismo
10.
J Mol Cell Cardiol ; 97: 286-94, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27139341

RESUMEN

Thin filament length (TFL) is an important determinant of the force-sarcomere length (SL) relation of cardiac muscle. However, the various mechanisms that control TFL are not well understood. Here we tested the previously proposed hypothesis that the actin-binding protein nebulin contributes to TFL regulation in the heart by using a cardiac-specific nebulin cKO mouse model (αMHC Cre Neb cKO). Atrial myocytes were studied because nebulin expression has been reported to be most prominent in this cell type. TFL was measured in right and left atrial myocytes using deconvolution optical microscopy and staining for filamentous actin with phalloidin and for the thin filament pointed-end with an antibody to the capping protein Tropomodulin-1 (Tmod1). Results showed that TFLs in Neb cKO and littermate control mice were not different. Thus, deletion of nebulin in the heart does not alter TFL. However, TFL was found to be ~0.05µm longer in the right than in the left atrium and Tmod1 expression was increased in the right atrium. We also tested the hypothesis that the length of titin's spring region is a factor controlling TFL by studying the Rbm20(ΔRRM) mouse which expresses titins that are ~500kDa (heterozygous mice) and ~1000kDa (homozygous mice) longer than in control mice. Results revealed that TFL was not different in Rbm20(ΔRRM) mice. An unexpected finding in all genotypes studied was that TFL increased as sarcomeres were stretched (~0.1µm per 0.35µm of SL increase). This apparent increase in TFL reached a maximum at a SL of ~3.0µm where TFL was ~1.05µm. The SL dependence of TFL was independent of chemical fixation or the presence of cardiac myosin-binding protein C (cMyBP-C). In summary, we found that in cardiac myocytes TFL varies with SL in a manner that is independent of the size of titin or the presence of nebulin.


Asunto(s)
Conectina/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Sarcómeros/fisiología , Animales , Ratones , Ratones Noqueados , Proteínas de Microfilamentos , Microscopía , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Miofibrillas , Cadenas Pesadas de Miosina/deficiencia , Cadenas Pesadas de Miosina/genética
11.
Ann Neurol ; 79(6): 959-69, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27074222

RESUMEN

OBJECTIVE: Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. METHODS: We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. RESULTS: Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. INTERPRETATION: These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969.


Asunto(s)
Citoesqueleto/genética , Proteínas Musculares/genética , Enfermedades Musculares/genética , Enfermedades Musculares/fisiopatología , Sarcómeros/genética , Actinas/genética , Animales , Estudios de Casos y Controles , Citoesqueleto/fisiología , Humanos , Ratones Noqueados , Contracción Muscular/genética , Contracción Muscular/fisiología , Proteínas Musculares/metabolismo , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Mutación , Sarcómeros/fisiología
12.
J Exp Biol ; 219(Pt 2): 146-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26792324

RESUMEN

Efficient muscle contraction in skeletal muscle is predicated on the regulation of actin filament lengths. In one long-standing model that was prominent for decades, the giant protein nebulin was proposed to function as a 'molecular ruler' to specify the lengths of the thin filaments. This theory was questioned by many observations, including experiments in which the length of nebulin was manipulated in skeletal myocytes; this approach revealed that nebulin functions to stabilize filamentous actin, allowing thin filaments to reach mature lengths. In addition, more recent data, mostly from in vivo models and identification of new interacting partners, have provided evidence that nebulin is not merely a structural protein. Nebulin plays a role in numerous cellular processes including regulation of muscle contraction, Z-disc formation, and myofibril organization and assembly.


Asunto(s)
Proteínas Musculares/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Enfermedad , Humanos , Proteínas Musculares/química , Proteínas Musculares/genética , Mutación/genética , Unión Proteica
13.
Proc Natl Acad Sci U S A ; 112(44): 13573-8, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26487682

RESUMEN

Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cardiomiopatía Dilatada/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Citoesqueleto de Actina/genética , Animales , Animales Recién Nacidos , Cardiomiopatía Dilatada/embriología , Cardiomiopatía Dilatada/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Genes Letales/genética , Corazón/embriología , Corazón/fisiopatología , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Contracción Muscular/genética , Contracción Muscular/fisiología , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miocardio/patología , Miocardio/ultraestructura , Sarcómeros/genética , Sarcómeros/metabolismo , Análisis de Supervivencia
15.
Proc Natl Acad Sci U S A ; 111(40): 14589-94, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246556

RESUMEN

Titin, the largest protein known, forms a giant filament in muscle where it spans the half sarcomere from Z disk to M band. Here we genetically targeted a stretch of 14 immunoglobulin-like and fibronectin type 3 domains that comprises the I-band/A-band (IA) junction and obtained a viable mouse model. Super-resolution optical microscopy (structured illumination microscopy, SIM) and electron microscopy were used to study the thick filament length and titin's molecular elasticity. SIM showed that the IA junction functionally belongs to the relatively stiff A-band region of titin. The stiffness of A-band titin was found to be high, relative to that of I-band titin (∼ 40-fold higher) but low, relative to that of the myosin-based thick filament (∼ 70-fold lower). Sarcomere stretch therefore results in movement of A-band titin with respect to the thick filament backbone, and this might constitute a novel length-sensing mechanism. Findings disproved that titin at the IA junction is crucial for thick filament length control, settling a long-standing hypothesis. SIM also showed that deleting the IA junction moves the attachment point of titin's spring region away from the Z disk, increasing the strain on titin's molecular spring elements. Functional studies from the cellular to ex vivo and in vivo left ventricular chamber levels showed that this causes diastolic dysfunction and other symptoms of heart failure with preserved ejection fraction (HFpEF). Thus, our work supports titin's important roles in diastolic function and disease of the heart.


Asunto(s)
Conectina/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Sarcómeros/metabolismo , Secuencia de Aminoácidos , Animales , Fenómenos Biomecánicos , Presión Sanguínea/fisiología , Western Blotting , Células Cultivadas , Conectina/genética , Ecocardiografía , Perfilación de la Expresión Génica , Modelos Lineales , Mecanotransducción Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Miocardio/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcómeros/ultraestructura , Homología de Secuencia de Aminoácido
16.
J Clin Invest ; 124(11): 4693-708, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25250574

RESUMEN

Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.


Asunto(s)
Proteínas Musculares/genética , Miofibrillas/patología , Miopatías Nemalínicas/genética , Actinas/química , Animales , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Heterocigoto , Homocigoto , Humanos , Masculino , Proteínas de Microfilamentos , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación Missense , Miofibrillas/metabolismo , Miopatías Nemalínicas/patología , Multimerización de Proteína , Pez Cebra
17.
Genes Dev ; 26(2): 114-9, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22241783

RESUMEN

Protein lysine methylation is one of the most widespread post-translational modifications in the nuclei of eukaryotic cells. Methylated lysines on histones and nonhistone proteins promote the formation of protein complexes that control gene expression and DNA replication and repair. In the cytoplasm, however, the role of lysine methylation in protein complex formation is not well established. Here we report that the cytoplasmic protein chaperone Hsp90 is methylated by the lysine methyltransferase Smyd2 in various cell types. In muscle, Hsp90 methylation contributes to the formation of a protein complex containing Smyd2, Hsp90, and the sarcomeric protein titin. Deficiency in Smyd2 results in the loss of Hsp90 methylation, impaired titin stability, and altered muscle function. Collectively, our data reveal a cytoplasmic protein network that employs lysine methylation for the maintenance and function of skeletal muscle.


Asunto(s)
Citoplasma/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Animales , Embrión de Pollo , Conectina , Citoplasma/enzimología , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Lisina/metabolismo , Metilación , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pez Cebra
18.
Trends Cell Biol ; 21(1): 29-37, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20951588

RESUMEN

Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Animales , Evolución Molecular , Humanos , Proteínas de Microfilamentos/química , Proteínas Musculares/química , Músculo Esquelético/metabolismo , Miocardio/metabolismo
19.
J Cell Sci ; 123(Pt 18): 3136-45, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20736303

RESUMEN

Regulation of actin filament assembly is essential for efficient contractile activity in striated muscle. Leiomodin is an actin-binding protein and homolog of the pointed-end capping protein, tropomodulin. These proteins are structurally similar, sharing a common domain organization that includes two actin-binding sites. Leiomodin also contains a unique C-terminal extension that has a third actin-binding WH2 domain. Recently, the striated-muscle-specific isoform of leiomodin (Lmod2) was reported to be an actin nucleator in cardiomyocytes. Here, we have identified a function of Lmod2 in the regulation of thin filament lengths. We show that Lmod2 localizes to the pointed ends of thin filaments, where it competes for binding with tropomodulin-1 (Tmod1). Overexpression of Lmod2 results in loss of Tmod1 assembly and elongation of the thin filaments from their pointed ends. The Lmod2 WH2 domain is required for lengthening because its removal results in a molecule that caps the pointed ends similarly to Tmod1. Furthermore, Lmod2 transcripts are first detected in the heart after it has begun to beat, suggesting that the primary function of Lmod2 is to maintain thin filament lengths in the mature heart. Thus, Lmod2 antagonizes the function of Tmod1, and together, these molecules might fine-tune thin filament lengths.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo , Miocardio/metabolismo , Tropomiosina/antagonistas & inhibidores , Tropomiosina/metabolismo , Citoesqueleto de Actina/química , Animales , Células Cultivadas , Embrión de Pollo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Células Musculares/metabolismo , Miocardio/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Tropomiosina/química , Tropomiosina/genética
20.
J Cell Biol ; 189(5): 859-70, 2010 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-20498015

RESUMEN

Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin filaments extended beyond the end of mini-nebulin, an observation which is inconsistent with a strict ruler function. However, under conditions that promote actin filament depolymerization, filaments associated with mini-nebulin were remarkably maintained at lengths either matching or longer than mini-nebulin. This indicates that mini-nebulin is able to stabilize portions of the filament it has no contact with. Knockdown of nebulin also resulted in more dynamic populations of thin filament components, whereas expression of mini-nebulin decreased the dynamics at both filament ends (i.e., recovered loss of endogenous nebulin). Thus, nebulin regulates thin filament architecture by a mechanism that includes stabilizing the filaments and preventing actin depolymerization.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Actinas/metabolismo , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Pollos , Humanos , Fibras Musculares Esqueléticas/efectos de los fármacos , Proteínas Musculares/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , ARN Interferente Pequeño/genética , Tiazolidinas/farmacología , Transfección , Tropomodulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA