Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Transl Med ; 13(10): e1391, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37759102

RESUMEN

BACKGROUND: Lung cancer remains the major cause of cancer-related deaths worldwide. Early stages of lung cancer are characterized by long asymptomatic periods that are ineffectively identified with the current screening programs. This deficiency represents a lost opportunity to improve the overall survival of patients. Serum biomarkers are among the most effective strategies for cancer screening and follow up. METHODS: Using bead-based multiplexing assays we screened plasma and tumours of the KrasG12D/+; Lkb1f/f (KL) mouse model of lung cancer for cytokines that could be used as biomarkers. We identified tissue inhibitor of metalloproteinase 1 (TIMP1) as an early biomarker and validated this finding in the plasma of lung cancer patients. We used immunohistochemistry (IHC), previously published single-cell RNA-seq and bulk RNA-seq data to assess the source and expression of TIMP1in the tumour. The prognostic value of TIMP1 was assessed using publicly available human proteomic and transcriptomic databases. RESULTS: We found that TIMP1 is a tumour-secreted protein with high sensitivity and specificity for aggressive cancer, even at early stages in mice. We showed that TIMP1 levels in the tumour and serum correlate with tumour burden and worse survival in mice. We validated this finding using clinical samples from our institution and publicly available human proteomic and transcriptomic databases. These data support the finding that high tumour expression of TIMP1 correlates with an unfavorable prognosis in lung cancer patients. CONCLUSION: TIMP1 is a suitable biomarker for lung cancer detection.


Asunto(s)
Neoplasias Pulmonares , Inhibidor Tisular de Metaloproteinasa-1 , Humanos , Animales , Ratones , Inhibidor Tisular de Metaloproteinasa-1/genética , Proteómica , Pronóstico , Biomarcadores , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Proteínas de Neoplasias
2.
JCI Insight ; 8(21)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37751306

RESUMEN

Intratumoral B cell responses are associated with more favorable clinical outcomes in human pancreatic ductal adenocarcinoma (PDAC). However, the antigens driving these B cell responses are largely unknown. We sought to discover these antigens by using single-cell RNA sequencing (scRNA-Seq) and immunoglobulin (Ig) sequencing of tumor-infiltrating immune cells from 7 primary PDAC samples. We identified activated T and B cell responses and evidence of germinal center reactions. Ig sequencing identified plasma cell (PC) clones expressing isotype-switched and hypermutated Igs, suggesting the occurrence of T cell-dependent B cell responses. We assessed the reactivity of 41 recombinant antibodies that represented the products of 235 PCs and 12 B cells toward multiple cell lines and PDAC tissues and observed frequent staining of intracellular self-antigens. Three of these antigens were identified: the filamentous actin (F-actin), the nucleic protein RuvB like AAA ATPase 2 (RUVBL2), and the mitochondrial protein heat shock protein family D (Hsp60) member 1 (HSPD1). Antibody titers against F-actin and HSPD1 were substantially elevated in the plasma of patients with PDAC compared with healthy donors. Thus, PCs in PDAC produce autoantibodies reacting with intracellular self-antigens, which may result from promotion of preexisting, autoreactive B cell responses. These observations indicate the chronic inflammatory microenvironment of PDAC can support the adaptive immune response.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Células Plasmáticas/metabolismo , Autoantígenos , Actinas/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras , ADN Helicasas/metabolismo
3.
J Biol Chem ; 299(5): 104582, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871762

RESUMEN

The ability to define functional interactions between enzymes and their substrates is crucial for understanding biological control mechanisms; however, such methods face challenges in the transient nature and low stoichiometry of enzyme-substrate interactions. Now, we have developed an optimized strategy that couples substrate-trapping mutagenesis to proximity-labeling mass spectrometry for quantitative analysis of protein complexes involving the protein tyrosine phosphatase PTP1B. This methodology represents a significant shift from classical schemes; it is capable of being performed at near-endogenous expression levels and increasing stoichiometry of target enrichment without a requirement for stimulation of supraphysiological tyrosine phosphorylation levels or maintenance of substrate complexes during lysis and enrichment procedures. Advantages of this new approach are illustrated through application to PTP1B interaction networks in models of HER2-positive and Herceptin-resistant breast cancer. We have demonstrated that inhibitors of PTP1B significantly reduced proliferation and viability in cell-based models of acquired and de novo Herceptin resistance in HER2-positive breast cancer. Using differential analysis, comparing substrate-trapping to wild-type PTP1B, we have identified multiple unreported protein targets of PTP1B with established links to HER2-induced signaling and provided internal validation of method specificity through overlap with previously identified substrate candidates. Overall, this versatile approach can be readily integrated with evolving proximity-labeling platforms (TurboID, BioID2, etc.), and is broadly applicable across all PTP family members for the identification of conditional substrate specificities and signaling nodes in models of human disease.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Transducción de Señal , Femenino , Humanos , Neoplasias de la Mama/genética , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas/metabolismo , Trastuzumab/farmacología , Mapeo de Interacción de Proteínas
4.
Oncogene ; 41(6): 757-769, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34845375

RESUMEN

Metastatic prostate cancer (PCa) in bone induces bone-forming lesions that enhance PCa progression. How tumor-induced bone formation enhances PCa progression is not known. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition by tumor-secreted bone morphogenetic protein 4 (BMP4). Here, we show that EC-to-OSB transition leads to changes in the tumor microenvironment that increases the metastatic potential of PCa cells. We found that conditioned medium (CM) from EC-OSB hybrid cells increases the migration, invasion, and survival of PC3-mm2 and C4-2B4 PCa cells. Quantitative mass spectrometry (Isobaric Tags for Relative and Absolute Quantitation) identified Tenascin C (TNC) as one of the major proteins secreted from EC-OSB hybrid cells. TNC expression in tumor-induced OSBs was confirmed by immunohistochemistry of MDA PCa-118b xenograft and human bone metastasis specimens. Mechanistically, BMP4 increases TNC expression in EC-OSB cells through the Smad1-Notch/Hey1 pathway. How TNC promotes PCa metastasis was next interrogated by in vitro and in vivo studies. In vitro studies showed that a TNC-neutralizing antibody inhibits EC-OSB-CM-mediated PCa cell migration and survival. TNC knockdown decreased, while the addition of recombinant TNC or TNC overexpression increased migration and anchorage-independent growth of PC3 or C4-2b cells. When injected orthotopically, PC3-mm2-shTNC clones decreased metastasis to bone, while C4-2b-TNC-overexpressing cells increased metastasis to lymph nodes. TNC enhances PCa cell migration through α5ß1 integrin-mediated YAP/TAZ inhibition. These studies elucidate that tumor-induced stromal reprogramming generates TNC that enhances PCa metastasis and suggest that TNC may be a target for PCa therapy.


Asunto(s)
Tenascina
5.
Bio Protoc ; 12(24)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36618090

RESUMEN

The importance of studying the mechanistic aspects of long non-coding RNAs is being increasingly emphasized as more and more regulatory RNAs are being discovered. Non-coding RNA sequences directly associate with generic RNA-binding proteins as well as specific proteins, which cooperate in the downstream functions of the RNA and can also be dysregulated in various physiologic states and/or diseases. While current methods exist for identifying RNA-protein interactions, these methods require high quantities of input cells or use pooled capture reagents that may increase non-specific binding. We have developed a method to efficiently capture specific RNAs using less than one million input cells. One single oligonucleotide is used to pull down the target RNA of choice and oligonucleotide selection is driven by sequence accessibility. We perform thermal elution to specifically elute the target RNA and its associated proteins, which are identified by mass spectrometry. Ultimately, two target and control oligonucleotides are used to create an enrichment map of interacting proteins of interest. This protocol was validated in: eLife (2021), DOI: 10.7554/eLife.68263.

6.
Elife ; 102021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34002693

RESUMEN

Hepatocellular carcinoma, the most common type of liver malignancy, is one of the most lethal forms of cancer. We identified a long non-coding RNA, Gm19705, that is overexpressed in hepatocellular carcinoma and mouse embryonic stem cells. We named this RNA Pluripotency and Hepatocyte Associated RNA Overexpressed in HCC, or PHAROH. Depletion of PHAROH impacts cell proliferation and migration, which can be rescued by ectopic expression of PHAROH. RNA-seq analysis of PHAROH knockouts revealed that a large number of genes with decreased expression contain a Myc motif in their promoter. MYC is decreased in knockout cells at the protein level, but not the mRNA level. RNA-antisense pulldown identified nucleolysin TIAR, a translational repressor, to bind to a 71-nt hairpin within PHAROH, sequestration of which increases MYC translation. In summary, our data suggest that PHAROH regulates MYC translation by sequestering TIAR and as such represents a potentially exciting diagnostic or therapeutic target in hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Células Madre Embrionarias de Ratones , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero , RNA-Seq
7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34021083

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Neurofibromina 1/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Ratones , Mutación , Páncreas/patología , Proteínas Represoras/genética , Transducción de Señal/genética
9.
Nat Commun ; 11(1): 6438, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33353933

RESUMEN

Misregulation of long non-coding RNA (lncRNA) genes has been linked to a wide variety of cancer types. Here we report on Mammary Tumor Associated RNA 25 (MaTAR25), a nuclear enriched and chromatin associated lncRNA that plays a role in mammary tumor cell proliferation, migration, and invasion, both in vitro and in vivo. MaTAR25 functions by interacting with purine rich element binding protein B (PURB), and associating with a major downstream target gene Tensin1 (Tns1) to regulate its expression in trans. The Tns1 protein product is a critical component of focal adhesions linking signaling between the extracellular matrix and the actin cytoskeleton. Knockout of MaTAR25 results in down-regulation of Tns1 leading to a reorganization of the actin cytoskeleton, and a reduction of focal adhesions and microvilli. We identify LINC01271 as the human ortholog of MaTAR25, and importantly, increased expression of LINC01271 is associated with poor patient prognosis and metastasis. Our findings demonstrate that LINC01271 represents a potential therapeutic target to alter breast cancer progression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Tensinas/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Núcleo Celular/genética , Proliferación Celular , Supervivencia Celular/genética , Uniones Célula-Matriz , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/secundario , Ratones , Invasividad Neoplásica , Unión Proteica , ARN Largo no Codificante/metabolismo , Tensinas/metabolismo
10.
Sci Rep ; 10(1): 14174, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843660

RESUMEN

Mitochondrial dysfunction and significant changes in metabolic pathways accompany cancer development and are responsible for maintaining the tumor microenvironment. Normal mitochondria can trigger intrinsic apoptosis by releasing cytochrome c into the cytosol. The survival of malignant cells highly depends on the suppression of this function. We validated that A250, a highly purified fraction of fermented wheat germ extract (FWGE), increases the carbon flux into the mitochondria, the expression of key elements of the Krebs cycle and oxidative phosphorylation (OXPHOS). The increased respiratory chain activity is related to the mitochondria's ability to release cytochrome c into the cytosol, which triggers the apoptotic cascade. The 68% tumor growth inhibitory effect observed in the murine melanoma study is related to this effect, as proteomic analysis validated similar changes in mitochondrial protein levels in the isolated tumor tissue samples. Blood count data indicated that this effect was not accompanied by general toxicity. This study is significant, as it shows that a highly concentrated form of FWGE is an effective agent that increases normal mitochondrial functionality. The lack of hepatotoxic and general toxic effects makes A250 an excellent candidate targeting mitochondria function in cancer therapy.


Asunto(s)
Mitocondrias/efectos de los fármacos , Extractos Vegetales/farmacología , Triticum/química , Efecto Warburg en Oncología/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Carbono/metabolismo , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocromos c/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Fermentación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Melanoma Experimental/tratamiento farmacológico , Metanol , Ratones , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Distribución Aleatoria , Solventes
11.
J Proteome Res ; 19(4): 1459-1469, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32141294

RESUMEN

Bottom-up proteomics is a mainstay in protein identification and analysis. These studies typically employ proteolytic treatment of biological samples to generate suitably sized peptides for tandem mass spectrometric (MS) analysis. In MS, fragmentation of peptides is largely driven by charge localization. Consequently, peptides with basic centers exclusively on their N-termini produce mainly b-ions. Thus, it was long ago realized that proteases that yield such peptides would be valuable proteomic tools for achieving simplified peptide fragmentation patterns and peptide assignment. Work by several groups has identified such proteases, however, structural analysis of these suggested that enzymatic optimization was possible. We therefore endeavored to find enzymes that could provide enhanced activity and versatility while maintaining specificity. Using these previously described proteases as informatic search templates, we discovered and then characterized a thermophilic metalloprotease with N-terminal specificity for arginine and lysine. This enzyme, dubbed Tryp-N, affords many advantages including improved thermostability, solvent and detergent tolerance, and rapid digestion time.


Asunto(s)
Péptido Hidrolasas , Proteómica , Secuencia de Aminoácidos , Péptidos , Espectrometría de Masas en Tándem
12.
J Proteome Res ; 19(2): 973-983, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31935107

RESUMEN

Massive formalin-fixed, paraffin-embedded (FFPE) tissue archives exist worldwide, representing an invaluable resource for clinical proteomics research. However, current protocols for FFPE proteomics lack standardization, efficiency, reproducibility, and scalability. Here we present high-yield protein extraction and recovery by direct solubilization (HYPERsol), an optimized workflow using ultrasonication and S-Trap sample processing that enables proteome coverage and quantification from FFPE samples comparable to that achieved from flash-frozen tissue (average R = 0.936). When applied to archival samples, HYPERsol resulted in high-quality data from FFPE specimens in storage for up to 17 years, and may enable the discovery of new immunohistochemical markers.


Asunto(s)
Formaldehído , Proteómica , Adhesión en Parafina , Reproducibilidad de los Resultados , Fijación del Tejido
13.
Nat Chem Biol ; 16(2): 122-125, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31873221

RESUMEN

We have identified a molecular interaction between the reversibly oxidized form of protein tyrosine phosphatase 1B (PTP1B) and 14-3-3ζ that regulates PTP1B activity. Destabilizing the transient interaction between 14-3-3ζ and PTP1B prevented PTP1B inactivation by reactive oxygen species and decreased epidermal growth factor receptor phosphorylation. Our data suggest that destabilizing the interaction between 14-3-3ζ and the reversibly oxidized and inactive form of PTP1B may establish a path to PTP1B activation in cells.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas 14-3-3/metabolismo , Biotinilación , Activación Enzimática , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Oxidación-Reducción , Fosforilación , Mapas de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Tirosina/metabolismo
14.
Science ; 364(6446): 1156-1162, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31221853

RESUMEN

Glycosylation alterations are indicative of tissue inflammation and neoplasia, but whether these alterations contribute to disease pathogenesis is largely unknown. To study the role of glycan changes in pancreatic disease, we inducibly expressed human fucosyltransferase 3 and ß1,3-galactosyltransferase 5 in mice, reconstituting the glycan sialyl-Lewisa, also known as carbohydrate antigen 19-9 (CA19-9). Notably, CA19-9 expression in mice resulted in rapid and severe pancreatitis with hyperactivation of epidermal growth factor receptor (EGFR) signaling. Mechanistically, CA19-9 modification of the matricellular protein fibulin-3 increased its interaction with EGFR, and blockade of fibulin-3, EGFR ligands, or CA19-9 prevented EGFR hyperactivation in organoids. CA19-9-mediated pancreatitis was reversible and could be suppressed with CA19-9 antibodies. CA19-9 also cooperated with the KrasG12D oncogene to produce aggressive pancreatic cancer. These findings implicate CA19-9 in the etiology of pancreatitis and pancreatic cancer and nominate CA19-9 as a therapeutic target.


Asunto(s)
Antígeno CA-19-9/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis/metabolismo , Enfermedad Aguda , Animales , Antígeno CA-19-9/inmunología , Carcinogénesis/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Enfermedad Crónica , Proteínas de la Matriz Extracelular/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Glicosilación , Humanos , Ratones , Terapia Molecular Dirigida/métodos , Neoplasias Pancreáticas/patología , Pancreatitis/patología
15.
Int J Mol Sci ; 19(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30572624

RESUMEN

Microsporidia are fungi-like parasites that have the smallest known eukaryotic genome, and for that reason they are used as a model to study the phenomenon of genome decay in parasitic forms of life. Similar to other intracellular parasites that reproduce asexually in an environment with alleviated natural selection, Microsporidia experience continuous genome decay that is driven by Muller's ratchet-an evolutionary process of irreversible accumulation of deleterious mutations that lead to gene loss and the miniaturization of cellular components. Particularly, Microsporidia have remarkably small ribosomes in which the rRNA is reduced to the minimal enzymatic core. In this study, we analyzed microsporidian ribosomes to study an apparent impact of Muller's ratchet on structure of RNA and protein molecules in parasitic forms of life. Through mass spectrometry of microsporidian proteome and analysis of microsporidian genomes, we found that massive rRNA reduction in microsporidian ribosomes appears to annihilate the binding sites for ribosomal proteins eL8, eL27, and eS31, suggesting that these proteins are no longer bound to the ribosome in microsporidian species. We then provided an evidence that protein eS31 is retained in Microsporidia due to its non-ribosomal function in ubiquitin biogenesis. Our study illustrates that, while Microsporidia carry the same set of ribosomal proteins as non-parasitic eukaryotes, some ribosomal proteins are no longer participating in protein synthesis in Microsporidia and they are preserved from genome decay by having extra-ribosomal functions. More generally, our study shows that many components of parasitic cells, which are identified by automated annotation of pathogenic genomes, may lack part of their biological functions due to continuous genome decay.


Asunto(s)
Espacio Intracelular/parasitología , Microsporidios/metabolismo , Parásitos/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Evolución Biológica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo
16.
Proteome Sci ; 16: 20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534005

RESUMEN

BACKGROUND: Abiotic stress reduces photosynthetic yield and plant growth, negatively impacting global crop production and is a major constraint faced by agriculture. However, the knowledge on the impact on plants under extremely high irradiance is limited. We present the first in-depth proteomics analysis of plants treated with a method developed by our research group to generate a light gradient using an extremely intense light. METHODS: The method consists of utilizing light emitting diodes (LED) to create a single spot at 24,000 µmol m- 2 s- 1 irradiance, generating three light stress levels. A light map and temperature profile were obtained during the light experiment. The proteins expressed in the treated tomato (Solanum lycopersicum, Heinz H1706) leaves were harvested 10 days after the treatment, allowing for the detection of proteins involved in a long-term recovery. A multiplex labeled proteomics method (iTRAQ) was analyzed by LC-MS/MS. RESULTS: A total of 3994 proteins were identified at 1% false discovery rate and matched additional quality filters. Hierarchical clustering analysis resulted in four types of patterns related to the protein expression, with one being directly linked to the increased LED irradiation. A total of 37 proteins were found unique to the least damaged leaf zone, while the medium damaged zone had 372 proteins, and the severely damaged presented unique 1003 proteins. Oxygen evolving complex and PSII complex proteins (PsbH, PsbS, PsbR and Psb28) were found to be abundant in the most damaged leaf zone. This leaf zone presented a protein involved in the salicylic acid response, while it was not abundant in the other leaf zones. The mRNA level of PsbR was significantly lower (1-fold) compared the control in the most damaged zone of the leaf, while Psb28 and PsbH were lower (1-fold) in the less damaged leaf zones. PsbS mRNA abundance in all leaf zones tested presented no statistically significant change from the control. CONCLUSIONS: We present the first characterization of the proteome changes caused by an extreme level of high-light intensity (24,000 µmol m- 2 s- 1). The proteomics results show the presence of specific defense responses to each level of light intensity, with a possible involvement of proteins PsbH, Psb28, PsbR, and PsbS.

17.
Genes Dev ; 32(13-14): 944-952, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945887

RESUMEN

The levels of copper, which is an essential element in living organisms, are under tight homeostatic control. Inactivating mutations in ATP7B, a P-type Cu-ATPase that functions in copper excretion, promote aberrant accumulation of the metal, primarily the in liver and brain. This condition underlies Wilson's disease, a severe autosomal recessive disorder characterized by profound hepatic and neurological deficits. Current treatment regimens rely on the use of broad specificity metal chelators as "decoppering" agents; however, there are side effects that limit their effectiveness. Here, we present the characterization of DPM-1001 {methyl 4-[7-hydroxy-10,13-dimethyl-3-({4-[(pyridin-2-ylmethyl)amino]butyl}amino)hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl] pentanoate} as a potent and highly selective chelator of copper that is orally bioavailable. Treatment of cell models, including fibroblasts derived from Wilson's disease patients, eliminated adverse effects associated with copper accumulation. Furthermore, treatment of the toxic milk mouse model of Wilson's disease with DPM-1001 lowered the levels of copper in the liver and brain, removing excess copper by excretion in the feces while ameliorating symptoms associated with the disease. These data suggest that it may be worthwhile to investigate DPM-1001 further as a new therapeutic agent for the treatment of Wilson's disease, with potential for application in other indications associated with elevated copper, including cancer and neurodegenerative diseases.


Asunto(s)
Quelantes/farmacología , Cobre/metabolismo , Degeneración Hepatolenticular/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Línea Celular , Quelantes/uso terapéutico , Cobre/toxicidad , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Degeneración Hepatolenticular/fisiopatología , Hígado/efectos de los fármacos , Hígado/patología , Ratones
18.
Proc Natl Acad Sci U S A ; 115(27): E6245-E6253, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915081

RESUMEN

Microsporidia are parasitic fungi-like organisms that invade the interior of living cells and cause chronic disorders in a broad range of animals, including humans. These pathogens have the tiniest known genomes among eukaryotic species, for which they serve as a model for exploring the phenomenon of genome reduction in obligate intracellular parasites. Here we report a case study to show an apparent effect of overall genome reduction on the primary structure and activity of aminoacyl-tRNA synthetases, indispensable cellular proteins required for protein synthesis. We find that most microsporidian synthetases lack regulatory and eukaryote-specific appended domains and have a high degree of sequence variability in tRNA-binding and catalytic domains. In one synthetase, LeuRS, an apparent sequence degeneration annihilates the editing domain, a catalytic center responsible for the accurate selection of leucine for protein synthesis. Unlike accurate LeuRS synthetases from other eukaryotic species, microsporidian LeuRS is error-prone: apart from leucine, it occasionally uses its near-cognate substrates, such as norvaline, isoleucine, valine, and methionine. Mass spectrometry analysis of the microsporidium Vavraia culicis proteome reveals that nearly 6% of leucine residues are erroneously replaced by other amino acids. This remarkably high frequency of mistranslation is not limited to leucine codons and appears to be a general property of protein synthesis in microsporidian parasites. Taken together, our findings reveal that the microsporidian protein synthesis machinery is editing-deficient, and that the proteome of microsporidian parasites is more diverse than would be anticipated based on their genome sequences.


Asunto(s)
Aminoacil-ARNt Sintetasas , Proteínas Fúngicas , Genoma Fúngico , Microsporida , Biosíntesis de Proteínas/fisiología , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Microsporida/genética , Microsporida/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
19.
Cell Rep ; 23(1): 58-67, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617673

RESUMEN

A hallmark of advanced prostate cancer (PC) is the concomitant loss of PTEN and p53 function. To selectively eliminate such cells, we screened cytotoxic compounds on Pten-/-;Trp53-/- fibroblasts and their Pten-WT reference. Highly selective killing of Pten-null cells can be achieved by deguelin, a natural insecticide. Deguelin eliminates Pten-deficient cells through inhibition of mitochondrial complex I (CI). Five hundred-fold higher drug doses are needed to obtain the same killing of Pten-WT cells, even though deguelin blocks their electron transport chain equally well. Selectivity arises because mitochondria of Pten-null cells consume ATP through complex V, instead of producing it. The resulting glucose dependency can be exploited to selectively kill Pten-null cells with clinically relevant CI inhibitors, especially if they are lipophilic. In vivo, deguelin suppressed disease in our genetically engineered mouse model for metastatic PC. Our data thus introduce a vulnerability for highly selective targeting of incurable PC with inhibitors of CI.


Asunto(s)
Antineoplásicos/farmacología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Rotenona/análogos & derivados , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Células Cultivadas , Complejo I de Transporte de Electrón/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Fibroblastos/metabolismo , Glucosa/metabolismo , Masculino , Ratones , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Rotenona/farmacología , Rotenona/uso terapéutico , Proteína p53 Supresora de Tumor/genética
20.
J Proteome Res ; 17(1): 348-358, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29110486

RESUMEN

Detergents play an essential role during the isolation of membrane protein complexes. Inappropriate use of detergents may affect the native fold of the membrane proteins, their binding to antibodies, or their interaction with partner proteins. Here we used cadherin-11 (Cad11) as an example to examine the impact of detergents on membrane protein complex isolation. We found that mAb 1A5 could immunoprecipitate Cad11 when membranes were solubilized by dodecyl maltoside (DDM) but not by octylglucoside, suggesting that octylglucoside interferes with Cad11-mAb 1A5 interaction. Furthermore, we compared the effects of Brij-35, Triton X-100, cholate, CHAPSO, Zwittergent 3-12, Deoxy BIG CHAP, and digitonin on Cad11 solubilization and immunoprecipitation. We found that all detergents except Brij-35 could solubilize Cad11 from the membrane. Upon immunoprecipitation, we found that ß-catenin, a known cadherin-interacting protein, was present in Cad11 immune complex among the detergents tested except Brij-35. However, the association of p120 catenin with Cad11 varied depending on the detergents used. Using isobaric tag for relative and absolute quantitation (iTRAQ) to determine the relative levels of proteins in Cad11 immune complexes, we found that DDM and Triton X-100 were more efficient than cholate in solubilization and immunoprecipitation of Cad11 and resulted in the identification of both canonical and new candidate Cad11-interacting proteins.


Asunto(s)
Detergentes/farmacología , Proteínas de la Membrana/aislamiento & purificación , Complejos Multiproteicos/aislamiento & purificación , Cadherinas , Inmunoprecipitación , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA