Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Ann Clin Transl Neurol ; 11(6): 1478-1491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703036

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS: Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS: The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION: We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/diagnóstico , Francia , Niño , Adulto , Masculino , Femenino , Adolescente , Persona de Mediana Edad , Preescolar , Estudios de Cohortes , Adulto Joven , Lactante , Secuenciación del Exoma , Anciano , Secuenciación Completa del Genoma , ADN Mitocondrial/genética , Diagnóstico Diferencial
2.
Neurobiol Dis ; 195: 106498, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583639

RESUMEN

CHCHD10-related disease causes a spectrum of clinical presentations including mitochondrial myopathy, cardiomyopathy, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We generated a knock-in mouse model bearing the p.Ser59Leu (S59L) CHCHD10 variant. Chchd10S59L/+ mice have been shown to phenotypically replicate the disorders observed in patients: myopathy with mtDNA instability, cardiomyopathy and typical ALS features (protein aggregation, neuromuscular junction degeneration and spinal motor neuron loss). Here, we conducted a comprehensive behavioral, electrophysiological and neuropathological assessment of Chchd10S59L/+ mice. These animals show impaired learning and memory capacities with reduced long-term potentiation (LTP) measured at the Perforant Pathway-Dentate Gyrus (PP-DG) synapses. In the hippocampus of Chchd10S59L/+ mice, neuropathological studies show the involvement of protein aggregates, activation of the integrated stress response (ISR) and neuroinflammation in the degenerative process. These findings contribute to decipher mechanisms associated with CHCHD10 variants linking mitochondrial dysfunction and neuronal death. They also validate the Chchd10S59L/+ mice as a relevant model for FTD, which can be used for preclinical studies to test new therapeutic strategies for this devastating disease.


Asunto(s)
Modelos Animales de Enfermedad , Demencia Frontotemporal , Proteínas Mitocondriales , Animales , Demencia Frontotemporal/patología , Demencia Frontotemporal/genética , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ratones Transgénicos , Conducta Animal/fisiología , Masculino , Potenciación a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Hipocampo/patología , Hipocampo/metabolismo
3.
Genes (Basel) ; 14(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136976

RESUMEN

Mitochondrial disorders are characterized by a huge clinical, biochemical, and genetic heterogeneity, which poses significant diagnostic challenges. Several studies report that more than 50% of patients with suspected mitochondrial disease could have a non-mitochondrial disorder. Thus, only the identification of the causative pathogenic variant can confirm the diagnosis. Herein, we describe the diagnostic journey of a family suspected of having a mitochondrial disorder who were referred to our Genetics Department. The proband presented with the association of cerebellar ataxia, COX-negative fibers on muscle histology, and mtDNA deletions. Whole exome sequencing (WES), supplemented by a high-resolution array, comparative genomic hybridization (array-CGH), allowed us to identify two pathogenic variants in the non-mitochondrial SYNE1 gene. The proband and her affected sister were found to be compound heterozygous for a known nonsense variant (c.13258C>T, p.(Arg4420Ter)), and a large intragenic deletion that was predicted to result in a loss of function. To our knowledge, this is the first report of a large intragenic deletion of SYNE1 in patients with cerebellar ataxia (ARCA1). This report highlights the interest in a pangenomic approach to identify the genetic basis in heterogeneous neuromuscular patients with the possible cause of mitochondrial disease. Moreover, even rare copy number variations should be considered in patients with a phenotype suggestive of SYNE1 deficiency.


Asunto(s)
Ataxia Cerebelosa , Enfermedades Mitocondriales , Humanos , Femenino , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Proteínas del Citoesqueleto/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Proteínas del Tejido Nervioso/genética
4.
Genes (Basel) ; 14(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38002924

RESUMEN

Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/patología , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Muerte Celular/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
6.
Eur J Hum Genet ; 31(10): 1175-1180, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36997679

RESUMEN

Biallelic pathogenic variants in ALDH1A3 are responsible for approximately 11% of recessively inherited cases of severe developmental eye anomalies. Some individuals can display variable neurodevelopmental features, but the relationship to the ALDH1A3 variants remains unclear. Here, we describe seven unrelated families with biallelic pathogenic ALDH1A3 variants: four compound heterozygous and three homozygous. All affected individuals had bilateral anophthalmia/microphthalmia (A/M), three with additional intellectual or developmental delay, one with autism and seizures and three with facial dysmorphic features. This study confirms that individuals with biallelic pathogenic ALDH1A3 variants consistently manifest A/M, but additionally display neurodevelopmental features with significant intra- and interfamilial variability. Furthermore, we describe the first case with cataract and highlight the importance of screening ALDH1A3 variants in nonconsanguineous families with A/M.


Asunto(s)
Anoftalmos , Anomalías del Ojo , Microftalmía , Humanos , Microftalmía/genética , Anoftalmos/genética , Mutación , Aldehído Oxidorreductasas/genética , Fenotipo
7.
Ophthalmic Genet ; 44(3): 304-312, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36094066

RESUMEN

BACKGROUND: Wolfram syndrome type 1 is a rare neurodegenerative disorder including diabetes insipidus, diabetes mellitus, optic atrophy, and deafness, with variable additional findings. The phenotypic spectrum is very heterogeneous, with non-autoimmune juvenile-onset diabetes and optic atrophy as minimal criteria for the diagnosis. Biallelic mutations in the WFS1 gene are the causative genetic anomaly for the syndrome, with, however, no evident genotype-phenotype correlation. Among the clinical features of the disease, diabetic retinopathy depicts a rarely reported microvascular complication. In this report, we describe the clinical and genetic findings in a 26-year-old patient presenting with Wolfram syndrome and severe diabetic retinopathy. METHODS: The mutation screening was performed by polymerase chain reaction followed by Sanger sequencing of the entire coding sequence of the WFS1 gene. RESULTS: A novel homozygous missense variant c.1901A>T (p.Lys634Met) was found in the proband and classified as probably pathogenic according to the American College of Medical Genetics and Genomics. CONCLUSIONS: The molecular study of the WFS1 gene is essential for the diagnostic confirmation, to provide appropriate genetic counseling and a mutational screening in the at-risk relatives. The c.1901A>T (p.Lys634 Met) is a novel variant that could be responsible for a severe form of Wolfram syndrome with early and proliferative diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Atrofia Óptica , Síndrome de Wolfram , Humanos , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/genética , Mutación , Mutación Missense , Atrofia Óptica/genética , Síndrome de Wolfram/diagnóstico , Síndrome de Wolfram/genética
8.
Eur J Med Genet ; 65(12): 104643, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252909

RESUMEN

Biallelic rare variants in NARS2 that encode the mitochondrial asparaginyl-tRNA synthetase are associated with a wide spectrum of clinical phenotypes ranging from severe neurodegenerative disorders to isolated mitochondrial myopathy or deafness. To date, only a small number of patients with NARS2 variants have been reported, and possible genotype-phenotype correlations are still lacking. Here, we present three siblings who had an early-onset hearing loss, while one developed severe symptoms in adulthood associated with early intellectual impairment, refractory seizures, moderate axonal sensorimotor neuropathy, and atypical psychiatric symptoms. Biochemical analysis revealed impairment of the activity and assembly of the respiratory chain complexes in this patient's muscle and fibroblasts. Whole Exome Sequencing allowed identification of a heterozygous variant NM_024678.5(NARS2):c.822G > C (p.Gln274His) that is known to be pathogenic and to affect splicing of the NARS2 gene, but was unable to detect a second variant in this gene. Coverage analysis and Sanger sequencing led to identification of a novel intronic deletion NM_024678.5(NARS2):c.922-21_922-19del in the three siblings in trans with the c.822G > C. Functional analysis by RT-PCR showed that this deletion was causing aberrant splicing and led to exon 9 skipping in NARS2 mRNA in patient fibroblasts. Our work expands the phenotype and genotype spectrum of NARS2-related disorders. We provide evidence of the pathogenic effect of a novel intronic deletion in the NARS2 gene and report on additional adult patients with a large intrafamilial variability associated with splice variants in this gene. More specifically, we detail the phenotype of the oldest living patient to date with NARS2 variants and, for the first time, we report the psychiatric symptoms associated with this gene. Our work confirms the complexity of genotype-phenotype correlation in patients with pathogenic NARS2 variants.


Asunto(s)
Aspartato-ARNt Ligasa , Empalme del ARN , Humanos , Aspartato-ARNt Ligasa/genética , Mutación , Fenotipo , Secuenciación del Exoma
9.
Epilepsia ; 63(10): 2519-2533, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35718920

RESUMEN

OBJECTIVE: γ-Aminobutyric acid (GABA)A -receptor subunit variants have recently been associated with neurodevelopmental disorders and/or epilepsy. The phenotype linked with each gene is becoming better known. Because of the common molecular structure and physiological role of these phenotypes, it seemed interesting to describe a putative phenotype associated with GABAA -receptor-related disorders as a whole and seek possible genotype-phenotype correlations. METHODS: We collected clinical, electrophysiological, therapeutic, and molecular data from patients with GABAA -receptor subunit variants (GABRA1, GABRB2, GABRB3, and GABRG2) through a national French collaboration using the EPIGENE network and compared these data to the one already described in the literature. RESULTS: We gathered the reported patients in three epileptic phenotypes: 15 patients with fever-related epilepsy (40%), 11 with early developmental epileptic encephalopathy (30%), 10 with generalized epilepsy spectrum (27%), and 1 patient without seizures (3%). We did not find a specific phenotype for any gene, but we showed that the location of variants on the transmembrane (TM) segment was associated with a more severe phenotype, irrespective of the GABAA -receptor subunit gene, whereas N-terminal variants seemed to be related to milder phenotypes. SIGNIFICANCE: GABAA -receptor subunit variants are associated with highly variable phenotypes despite their molecular and physiological proximity. None of the genes described here was associated with a specific phenotype. On the other hand, it appears that the location of the variant on the protein may be a marker of severity. Variant location may have important weight in the development of targeted therapeutics.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Estudios de Cohortes , Epilepsia/genética , Estudios de Asociación Genética , Humanos , Mutación , Fenotipo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Brain ; 145(10): 3415-3430, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35656794

RESUMEN

CHCHD10 is an amyotrophic lateral sclerosis/frontotemporal dementia gene that encodes a mitochondrial protein whose precise function is unclear. Here we show that Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing protein 10 interacts with the Stomatin-Like Protein 2 and participates in the stability of the prohibitin complex in the inner mitochondrial membrane. By using patient fibroblasts and mouse models expressing the same CHCHD10 variant (p.Ser59Leu), we show that Stomatin-Like Protein 2 forms aggregates with prohibitins, found in vivo in the hippocampus and as aggresome-like inclusions in spinal motor neurons of Chchd10S59L/+ mice. Affected cells and tissues display instability of the prohibitin complex, which participates at least in part in the activation of the OMA1 cascade with OPA1 processing leading to mitochondrial fragmentation, abnormal mitochondrial cristae morphogenesis and neuronal death found in spinal cord and the hippocampus of Chchd10S59L/+ animals. Destabilization of the prohibitin complex leads to the instability of the mitochondrial contact site and cristae organizing the system complex, probably by the disruption of OPA1-mitofilin interaction. Thus, Stomatin-Like Protein 2/prohibitin aggregates and destabilization of the prohibitin complex are critical in the sequence of events leading to motor neuron death in CHCHD10S59L-related disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteínas de la Membrana , Proteínas Mitocondriales , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas Motoras/metabolismo , Prohibitinas , Factores de Transcripción/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...