Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(65): e202302090, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37621157

RESUMEN

Cold plasma is gaining increasing attention as a novel tool to activate energy demanding chemical processes, including advanced reduction/oxidation processes (AROPs) of organic pollutants in water. The very complex milieu generated by discharges at the water/plasma interface comprises photons, strong oxidants and strong reductants which can be exploited for achieving the degradation of most any kind of pollutants. Despite the complexity of these systems, the powerful arsenal of mechanistic tools and chemical probes of physical organic chemists can be usefully applied to understand and develop plasma chemistry. Specifically, the added value of air plasma generated by in situ discharge with respect to ozonation (ex situ discharge) is demonstrated using phenol and various phenol derivatives and mechanistic evidence for the prevailing role of hydroxyl radicals in the initial attack is presented. On the reduction front, the impressive performance of cold plasma in inducing the degradation of recalcitrant perfluoroalkyl substances, which do not react with OH radicals but are attacked by electrons, is reported and discussed. The widely different reactivities of perfluorooctanoic acid (PFOA) and of perfluorobutanoic acid (PFBA) underline the crucial role played in these processes by the interface between plasma and solution and the surfactant properties of the treated pollutants.

2.
Chemosphere ; 341: 139972, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37640214

RESUMEN

Non-thermal plasma is a promising tool for novel technologies to treat water contaminated by recalcitrant pollutants. We report here on products, reactive species and mechanisms of the efficient degradation of perfluorooctanoic acid (PFOA) achieved with a self-pulsing discharge developed previously in our lab. Air or argon were used as plasma feed gas, ultrapure or tap water as aqueous medium. Identified organic intermediate products arise from chain-shortening and defluorination reactions, the latter achieving not only C-F to C-H exchange (hydro-de-fluorination), as reported in the literature, but also C-F to C-OH exchange (hydroxy-de-fluorination). In contrast with chain-shortening, yielding lower homologues of PFOA via selective cleavage of the C-C bond at the carboxylate group, defluorination occurs at various sites of the alkyl chain giving mixtures of different isomeric products. Plasma generated reactive species were investigated under all experimental conditions tested, using specific chemical probes and optical emission spectroscopy. Cross-analysis of the results revealed a striking direct correlation of energy efficiency for PFOA degradation and for production of plasma electrons. In contrast, no correlation was observed for emission bands of either Ar+ or OH radical. These results indicate a prevalent role of plasma electrons in initiating PFOA degradation using self-pulsing discharge plasma above the liquid.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/química , Caprilatos/química , Ácidos Carboxílicos , Agua , Contaminantes Químicos del Agua/química
3.
Chemosphere ; 307(Pt 2): 135800, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35931256

RESUMEN

Atmospheric plasma offers a viable approach to new water remediation technologies, best suited for the degradation of persistent organic pollutants such as PFAS, per- and polyfluoroalkyl substances. This paper reports on the remarkable performance of a novel RAdial Plasma (RAP) discharge reactor in treating water contaminated with PFAS surfactants, notably the ubiquitous perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). RAP proved to be versatile and robust, performing very well over a wide range of pollutants concentrations. Thus, PFOA degradation was most satisfactory with regard to all critical indicators, kinetics (≥99% PFOA conversion in less than 2.5 min and 30 min in solutions with initial concentrations of 41 µg/L and 41 mg/L, respectively), byproducts, and energy efficiency (G50 greater than 2000 mg/kWh for 41 µg/L - 4.1 mg/L PFOA initial concentrations). Likewise for PFOS as well as for Triton X-100, a common fluorine-free non-ionic surfactant tested to explore the scope of applicability of RAP to the degradation of surfactants in general. The results obtained with RAP compare most favourably with those reported for state-of-art plasma systems in similar experiments. RAP's excellent performance is attributed to the dense network of radial discharges it generates, randomly spread over the entire exposed surface of the liquid thus establishing an extended highly reactive plasma-liquid interface with both strongly reducing and oxidizing species. Mechanistic insight is offered based on the observed degradation products and on available literature data on the surfactants properties and on their plasma induced degradation investigated in previous studies.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Contaminantes Químicos del Agua , Caprilatos , Fluorocarburos/análisis , Octoxinol , Contaminantes Orgánicos Persistentes , Tensoactivos , Agua , Contaminantes Químicos del Agua/análisis
4.
Cancers (Basel) ; 14(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35681598

RESUMEN

Pancreas ductal adenocarcinoma (PDAC) is one the most aggressive cancers and associated with very high mortality, requiring the development of novel treatments. The mitochondrial voltage-gated potassium channel, Kv1.3 is emerging as an attractive oncologic target but its function in PDAC is unknown. Here, we evaluated the tissue expression of Kv1.3 in resected PDAC from 55 patients using immunohistochemistry (IHC) and show that all tumors expressed Kv1.3 with 60% of tumor specimens having high Kv1.3 expression. In Pan02 cells, the recently developed mitochondria-targeted Kv1.3 inhibitors PCARBTP and PAPTP strongly reduced cell survival in vitro. In an orthotopic pancreas tumor model (Pan02 cells injected into C57BL/6 mice) in immune-competent mice, injection of PAPTP or PCARBTP resulted in tumor reductions of 87% and 70%, respectively. When combined with clinically used Gemcitabine plus Abraxane (albumin-bound paclitaxel), reduction reached 95% and 80% without resultant organ toxicity. Drug-mediated tumor cell death occurred through the p38-MAPK pathway, loss of mitochondrial membrane potential, and oxidative stress. Resistant Pan02 clones to PCARBTP escaped cell death through upregulation of the antioxidant system. In contrast, tumor cells did not develop resistance to PAPTP. Our data show that Kv1.3 is highly expressed in resected human PDAC and the use of novel mitochondrial Kv1.3 inhibitors combined with cytotoxic chemotherapies might be a novel, effective treatment for PDAC.

5.
J Exp Clin Cancer Res ; 41(1): 64, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172855

RESUMEN

BACKGROUND: Ion channels are emerging as promising oncological targets. The potassium channels Kv1.3 and IKCa are highly expressed in the plasma membrane and mitochondria of human chronic lymphocytic leukemia (CLL) cells, compared to healthy lymphocytes. In vitro, inhibition of mitoKv1.3 by PAPTP was shown to kill ex vivo primary human CLL cells, while targeting IKCa with TRAM-34 decreased CLL cell proliferation. METHODS: Here we evaluated the effect of the above drugs in CLL cells from ibrutinib-resistant patients and in combination with Venetoclax, two drugs used in the clinical practice. The effects of the drugs were tested also in the Eµ-TCL1 genetic CLL murine model, characterized by a lympho-proliferative disease reminiscent of aggressive human CLL. Eµ-TCL1 mice showing overt disease state were treated with intraperitoneal injections of non-toxic 5 nmol/g PAPTP or 10 nmol/g TRAM-34 once a day and the number and percentage of pathological B cells (CD19+CD5+) in different, pathologically relevant body districts were determined. RESULTS: We show that Kv1.3 expression correlates with sensitivity of the human and mouse neoplastic cells to PAPTP. Primary CLL cells from ibrutinib-resistant patients could be killed with PAPTP and this drug enhanced the effect of Venetoclax, by acting on mitoKv1.3 of the inner mitochondrial membrane and triggering rapid mitochondrial changes and cytochrome c release. In vivo, after 2 week- therapy of Eµ-TCL1 mice harboring distinct CLL clones, leukemia burden was reduced by more than 85%: the number and percentage of CLL B cells fall in the spleen and peritoneal cavity and in the peripheral blood, without signs of toxicity. Notably, CLL infiltration into liver and spleen and splenomegaly were also drastically reduced upon PAPTP treatment. In contrast, TRAM-34 did not exert any beneficial effect when administered in vivo to Eµ-TCL1 mice at non-toxic concentration. CONCLUSION: Altogether, by comparing vehicle versus compound effect in different Eµ-TCL1 animals bearing unique clones similarly to CLL patients, we conclude that PAPTP significantly reduced leukemia burden in CLL-relevant districts, even in animals with advanced stage of the disease. Our results thus identify PAPTP as a very promising drug for CLL treatment, even for the chemoresistant forms of the disease.


Asunto(s)
Linfocitos B/metabolismo , Canal de Potasio Kv1.3/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Animales , Apoptosis , Modelos Animales de Enfermedad , Humanos , Ratones
6.
J Environ Manage ; 301: 113885, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619592

RESUMEN

Cold plasma based treatment of contaminated water is becoming a promising novel green remediation option. This study assessed the performance of two different cold plasma reactors, using, respectively, a self-pulsing discharge (SPD) and a multipin corona discharge (MCD), in the degradation of dimethyl phthalate (DMP), a persistent and ubiquitous pollutant of the aquatic environment. The process kinetics and energy efficiency, as well as the main plasma generated reactive species were determined under various operating conditions concerning the plasma feed gas and flowrate, the voltage polarity, the input power, the DMP initial concentration, the liquid conductivity, and the aqueous matrix used to prepare DMP solutions for these experiments. The MCD reactor, operated with air as plasma feed gas and negative voltage polarity, gave the best results in terms of rate and energy efficiency. Moreover, variations in plasma input power and in the liquid conductivity have limited effect on DMP degradation rate, making this reactor suitable for treating liquids with a range of initial conductivities The effects of DMP initial concentration on its rate of degradation and on the process energy efficiency were also investigated. Differences in the efficiency of production and distribution of plasma generated reactive species, notably •OH and H2O2, observed for the two tested reactors are discussed in terms of different extension of the plasma/liquid interface and diffusion into the bulk solution. It is proposed that among the reactive species, •OH foremost, and O3 to a lesser extent, play a pivotal role in DMP degradation, while the contribution of H2O2 appears to be limited. The rate of DMP degradation was not drastically different in Milli-Q water and in tap water, a positive outcome in view of practical applications of the technology. The lower rate observed in tap than in Milli-Q water is attributed to the presence of bicarbonate and carbonate, which are known scavengers of hydroxyl radicals.


Asunto(s)
Ácidos Ftálicos , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Cinética , Agua
7.
J Am Chem Soc ; 143(45): 19067-19077, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34738797

RESUMEN

Many synthetic polymers used to form polymer-brush films feature a main backbone with functional, oligomeric side chains. While the structure of such graft polymers mimics biomacromolecules to an extent, it lacks the monodispersity and structural purity present in nature. Here we demonstrate that side-chain heterogeneity within graft polymers significantly influences hydration and the occurrence of hydrophobic interactions in the subsequently formed brushes and consequently impacts fundamental interfacial properties. This is demonstrated for the case of poly(methacrylate)s (PMAs) presenting oligomeric side chains of different length (n) and dispersity. A precise tuning of brush structure was achieved by first synthesizing oligo(2-ethyl-2-oxazoline) methacrylates (OEOXMAs) by cationic ring-opening polymerization (CROP), subsequently purifying them into discrete macromonomers with distinct values of n by column chromatography, and finally obtaining poly[oligo(2-ethyl-2-oxazoline) methacrylate]s (POEOXMAs) by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Assembly of POEOXMA on Au surfaces yielded graft polymer brushes with different side-chain dispersities and lengths, whose properties were thoroughly investigated by a combination of variable angle spectroscopic ellipsometry (VASE), quartz crystal microbalance with dissipation (QCMD), and atomic force microscopy (AFM) methods. Side-chain dispersity, or dispersity within brushes, leads to assemblies that are more hydrated, less adhesive, and more lubricious and biopassive compared to analogous films obtained from graft polymers characterized by a homogeneous structure.

9.
Methods Mol Biol ; 2275: 141-160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34118036

RESUMEN

Resveratrol and quercetin are among the most studied plant polyphenols, and have many health-promoting actions. Strategies to accumulate them into mitochondria may be of therapeutic relevance, since these compounds are redox active and are well known to impact mitochondria and mitochondrial proteins. We report here the procedures to synthesize mitochondria-targeted resveratrol and quercetin derivatives; the synthetic strategies reported are however expected to be adaptable to other polyphenols with similar reactivity at the phenolic hydroxyls. Mitochondrial targeting can be achieved by conjugation with triphenylphosphonium , a lipophilic cation; this was linked via a butyl spacer forming an ether bond with one of the phenolic oxygens. The first step toward the synthesis of all mitochondriotropic derivatives described in this work is the production of a regiospecific -(4-O-chlorobutyl) derivative. Triphenylphosphonium (P+Ph3I-) is then introduced through two consecutive nucleophilic substitution steps: -Cl â†’ -I â†’ -P+Ph3I-. Pure mono-substituted chlorobutyl regioisomers are obtained by purification from the reaction mixture in the case of resveratrol , while specific protection strategies are required for quercetin to favor alkylation of one specific hydroxyl.Functionalization of the remaining hydroxyls can be exploited to modulate the physicochemical properties of the derivatives (i.e., water solubility, affinity for cell membranes); we report here synthetic protocols to obtain acetylated and methylated analogs.A brief description of some methods to assess the accumulation of the derivatives in mitochondria is also given; the proposed techniques are the use of a TPP +-selective electrode (with isolated rat liver mitochondria ) and fluorescence microscopy (with cultured cells).


Asunto(s)
Mitocondrias Hepáticas/química , Polifenoles/síntesis química , Quercetina/análogos & derivados , Resveratrol/análogos & derivados , Animales , Células HCT116 , Humanos , Mitocondrias Hepáticas/efectos de los fármacos , Estructura Molecular , Compuestos Organofosforados/química , Polifenoles/química , Polifenoles/farmacología , Ratas
10.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562146

RESUMEN

A developing family of chemotherapeutics-derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)-target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48-61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48-61 and Angiopep-2 allowed the delivery of 0.3-0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound.

11.
Pharmacol Res ; 164: 105326, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33338625

RESUMEN

The two-pore potassium channel TASK-3 has been shown to localize to both the plasma membrane and the mitochondrial inner membrane. TASK-3 is highly expressed in melanoma and breast cancer cells and has been proposed to promote tumor formation. Here we investigated whether pharmacological modulation of TASK-3, and specifically of mitochondrial TASK-3 (mitoTASK-3), had any effect on cancer cell survival and mitochondrial physiology. A novel, mitochondriotropic version of the specific TASK-3 inhibitor IN-THPP has been synthesized by addition of a positively charged triphenylphosphonium moiety. While IN-THPP was unable to induce apoptosis, mitoIN-THPP decreased survival of breast cancer cells and efficiently killed melanoma lines, which we show to express mitoTASK-3. Cell death was accompanied by mitochondrial membrane depolarization and fragmentation of the mitochondrial network, suggesting a role of the channel in the maintenance of the correct function of this organelle. In accordance, cells treated with mitoIN-THPP became rapidly depleted of mitochondrial ATP which resulted in activation of the AMP-dependent kinase AMPK. Importantly, cell survival was not affected in mouse embryonic fibroblasts and the effect of mitoIN-THPP was less pronounced in human melanoma cells stably knocked down for TASK-3 expression, indicating a certain degree of selectivity of the drug both for pathological cells and for the channel. In addition, mitoIN-THPP inhibited cancer cell migration to a higher extent than IN-THPP in two melanoma cell lines. In summary, our results point to the importance of mitoTASK-3 for melanoma cell survival and migration.


Asunto(s)
Mitocondrias/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Pirimidinas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/fisiología , Bloqueadores de los Canales de Potasio/síntesis química , Pirimidinas/síntesis química , Especies Reactivas de Oxígeno/metabolismo
12.
Redox Biol ; 37: 101705, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007503

RESUMEN

The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool.


Asunto(s)
Canal de Potasio Kv1.3 , Mitocondrias , Animales , Línea Celular Tumoral , Disección , Humanos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno
13.
ACS Sens ; 5(9): 2866-2875, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32799531

RESUMEN

Superoxide is one of the reactive oxygen species (ROS) in non-thermal plasmas generated by electrical discharges in air at room temperature and atmospheric pressure. One important application of such plasmas is the activation of advanced oxidation processes for air and water decontaminating treatments. When in contact with aqueous media, ROS and notably superoxide can react at the plasma/liquid interface or transfer and react into the liquid. While the detection of superoxide in plasma-treated water has been reported in the literature, to the best of our knowledge, quantitative determinations are lacking. We report here the determination of superoxide rate of formation and steady-state concentration in water subjected to air non-thermal plasma in a streamer discharge reactor used previously to treat various organic contaminants. After detecting the presence of superoxide by spin-trapping and electron paramagnetic resonance analyses, we applied superoxide-selective fluorescent probes to carry out quantitative determinations. The first probe tested, 3',6'-bis(diphenylphosphinyl) fluorescein (PF-1), was not sufficiently soluble, but the second one, fluorescein-bis-[(N-methylpyridinium-3-yl)sulfonate iodide] (FMSI), was applied successfully. Under typical plasma operating conditions, the rate of superoxide formation and its steady-state concentration were (0.27 ± 0.15) µM s-1 and (0.007 ± 0.004) nM, respectively. The procedure outlined here can be usefully applied to detect and quantify superoxide in water treated by different plasma sources in various types of plasma reactors.


Asunto(s)
Colorantes Fluorescentes , Superóxidos , Oxidación-Reducción , Especies Reactivas de Oxígeno , Agua
14.
Cell Physiol Biochem ; 53(S1): 1-10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31804046

RESUMEN

BACKGROUND/AIMS: We have previously shown that inhibition of the mitochondrial Kv1.3 channel results in an initial mitochondrial hyperpolarization and a release of oxygen radicals that mediate mitochondrial depolarization, cytochrome c release and death. Here, we investigated whether inhibition of Kv1.3 channels can also induce cellular resistance mechanisms that counteract the induction of cell death under certain conditions. METHODS: We treated leukemic T cells with the mitochondria-targeted Kv1.3 inhibitor PCARBTP and determined the activity of different kinases associated with cell survival including ZAP70, PI-3-K, AKT, JNK and ERK by measuring the activation-associated phosphorylation of these proteins. Furthermore, we inhibited AKT and JNK and determined the effect of PCARBTP-induced tumor cell death. RESULTS: We demonstrate that treatment of Jurkat T leukemia cells with low doses of the mitochondria-targeted inhibitor of Kv1.3 PCARBTP (0.25 µM or 1 µM) for 10 minutes induced a constitutive phosphorylation/activation of the pro-survival signaling molecules ZAP70, PI-3-K, AKT and JNK, while the phosphorylation/activation of ERK was not affected. Stimulation of Jurkat cells via the TCR/CD3 complex induced an additional activation of a similar pattern of signaling events. Higher doses of the Kv1.3 inhibitor, i.e. 10 µM PCARBTP, reduced the basal phosphorylation/activation of these signaling molecules and also impaired their activation upon stimulation via the TCR/CD3 complex. A low dose of PCARBTP, i.e. 0.25 µM PCARBTP, was almost without any effect on cell death. In contrast, concomitant inhibition of PI-3-K or AKT greatly sensitized Jurkat leukemia cells to the Kv1.3 inhibitor PCARBTP and allowed induction of cell death already at 0.25 µM PCARBTP. CONCLUSION: These studies indicate that Jurkat leukemia cells respond to low doses of the mitochondria-targeted Kv1.3 inhibitor PCARBTP with an activation of survival signals counteracting cell death. Inhibition of these T cell survival signals sensitizes leukemia cells to death induced by mitochondria-targeted Kv1.3 inhibitors. High doses of the Kv1.3 inhibitor inactivate these signals directly permitting death.


Asunto(s)
Apoptosis/efectos de los fármacos , Cumarinas/farmacología , Compuestos Organofosforados/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células Jurkat , Leucemia/metabolismo , Leucemia/patología , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Proteína Tirosina Quinasa ZAP-70/antagonistas & inhibidores , Proteína Tirosina Quinasa ZAP-70/metabolismo
15.
ACS Sens ; 4(11): 3080-3083, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31674770

RESUMEN

Recently, a new water-soluble, fluorescein-based probe for the detection of superoxide radical anion in aqueous media was developed by Lu et al. (ACS Sens. 2018, 3, 59-64). The probe was proven to be selective for superoxide and was used successfully also in cells and zebrafish embryos. To characterize the response of the probe to superoxide, Lu et al. used KO2 dissolved in deionized water as a surrogate. In testing this probe in different applications, we repeated some of these experiments and came to realize that the fluorescence signal observed by the Authors in their experiments with KO2 was incorrectly attributed to the reaction of the probe with superoxide and is due instead to its reactions with HO- and HO2-. We show that indeed under the conditions used in these assays KO2 undergoes very fast reaction with water to form HO- and HO2-. On the other hand, by using a proper surrogate, namely, KO2 dissolved in DMSO, and spin trapping experiments, we confirmed the ability of the probe to detect superoxide.


Asunto(s)
Colorantes Fluorescentes , Superóxidos , Animales , Lisosomas , Mitocondrias , Agua , Pez Cebra
16.
Cell Rep ; 28(8): 1949-1960.e6, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433973

RESUMEN

Wnt signaling affects fundamental development pathways and, if aberrantly activated, promotes the development of cancers. Wnt signaling is modulated by different factors, but whether the mitochondrial energetic state affects Wnt signaling is unknown. Here, we show that sublethal concentrations of different compounds that decrease mitochondrial ATP production specifically downregulate Wnt/ß-catenin signaling in vitro in colon cancer cells and in vivo in zebrafish reporter lines. Accordingly, fibroblasts from a GRACILE syndrome patient and a generated zebrafish model lead to reduced Wnt signaling. We identify a mitochondria-Wnt signaling axis whereby a decrease in mitochondrial ATP reduces calcium uptake into the endoplasmic reticulum (ER), leading to endoplasmic reticulum stress and to impaired Wnt signaling. In turn, the recovery of the ATP level or the inhibition of endoplasmic reticulum stress restores Wnt activity. These findings reveal a mechanism that links mitochondrial energetic metabolism to the control of the Wnt pathway that may be beneficial against several pathologies.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Regulación hacia Abajo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular , Fibroblastos/metabolismo , Humanos , Pez Cebra
18.
Front Chem ; 7: 344, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31165059

RESUMEN

This paper reports and discusses the beneficial effects on the quality of electrospun polycaprolactone nanofibers brought about by pretreatment of the solvent with non-thermal plasma. Chloroform/dimethylformamide 9:1 (CHCl3:DMF 9:1) and pure chloroform were pretreated by a few minute exposure to the plasma generated by an atmospheric pressure plasma jet (APPJ). Interestingly, when pure chloroform was used, the advantages of plasma pretreatment of the solvent were way less pronounced than found with the CHCl3:DMF 9:1 mixture. The chemical modifications induced by the plasma in the solvents were investigated by means of complementary analytical techniques. GC-MS revealed the formation of solvent-derived volatile products, notably tetrachloroethylene (C2Cl4), 1,1,2,2-tetrachloroethane (C2H2Cl4), pentachloroethane (C2HCl5), hexachloroethane (C2Cl6) and, in the case of the mixed solvent, also N-methylformamide (C2H5NO). The chlorinated volatile products are attributed to reactions of ·Cl and Cl-containing methyl radicals and carbenes formed in the plasma-treated solvents. ·Cl and ·CCl3 radicals were detected and identified by EPR spectroscopy analyses. Ion chromatography revealed the presence of Cl-, NO 3 - , and HCOO- (the latter only in the presence of DMF) in the plasma-treated solvents, thus accounting for the observed increased conductivity and acidification of the solvent after plasma treatment. Mechanisms for the formation of these solvent derived products induced by plasma are proposed and discussed. The major role of radicals and ions in the plasma chemistry of chloroform and of the chloroform/dimethylformamide mixture is highlighted. The results provide insight into the interaction of plasma with organic solvents, a field so far little explored but holding promise for interesting applications.

19.
Angew Chem Int Ed Engl ; 58(29): 9917-9922, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31132197

RESUMEN

Ca2+ handling by mitochondria is crucial for cell life and the direct measure of mitochondrial Ca2+ concentration in living cells is of pivotal interest. Genetically-encoded indicators greatly facilitated this task, however they require demanding delivery procedures. On the other hand, existing mitochondria-targeted synthetic Ca2+ indicators are plagued by several drawbacks, for example, non-specific localization, leakage, toxicity. Here we report the synthesis and characterization of a new fluorescent Ca2+ sensor, named mt-fura-2, obtained by coupling two triphenylphosphonium cations to the molecular backbone of the ratiometric Ca2+ indicator fura-2. Mt-fura-2 binds Ca2+ with a dissociation constant of ≈1.5 µm in vitro. When loaded in different cell types as acetoxymethyl ester, the probe shows proper mitochondrial localization and accurately measures matrix [Ca2+ ] variations, proving its superiority over available dyes. We describe the synthesis, characterization and application of mt-fura-2 to cell types where the delivery of genetically-encoded indicators is troublesome.


Asunto(s)
Calcio/metabolismo , Colorantes Fluorescentes/uso terapéutico , Mitocondrias/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos
20.
Chemosphere ; 210: 653-661, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30031349

RESUMEN

The herbicide 2-(methylthio)-4-(tert-butylamino)-6-(cyclopropylamino)-s-triazine (tradename Irgarol 1051, abbreviated here as Irg), widely used in antifouling paints as biocide inhibiting seaweeds growth, is found in coastal waters in the vicinity of ports and harbors. In this work, Irg was subjected to air non-thermal plasma (NTP) treatment, alone and in the presence of TiO2. A dielectric barrier discharge reactor was used, powered by AC voltage (18 kV, 50 Hz) to produce air-NTP directly above the surface of the aqueous Irg solution to be treated. Due to the very fast degradation of Irg occurring under the experimental conditions used, the results of kinetic experiments failed to detect any rate enhancement due to titania induced photodegradation. We show, however, that pre-adsorption of Irg on titania provides a means to significantly increase Irg NTP-induced degradation throughput, a result which might have useful practical consequences. It is concluded that this phenomenon is due to the acidic character of TiO2 which brings more Irg in solution by increasing the value of the ionization ratio, [IrgH+]/[Irg]. Product analysis, performed by LC/ESI-MSn, allowed us to detect and identify numerous intermediates of Irg degradation and to propose different competing reaction pathways for the investigated NTP induced Irg advanced oxidation process. The extent of mineralization to CO2 was assessed by Total Carbon analysis. It was found to reach 95% after 5 h treatment of Irg solutions with an initial concentration of 5·10-6 M. These results confirm the capability of our NTP prototype reactor to mineralize persistent organic pollutants.


Asunto(s)
Gases em Plasma/química , Titanio/química , Triazinas/química , Herbicidas/química , Fotólisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...