RESUMEN
In this Letter, we report on a novel two-step epitaxial growth technique that enables a significant improvement of the crystal quality of nitrogen-polar GaN. The starting material is grown on 4° vicinal sapphire substrates by metal-organic vapor-phase epitaxy, with an initial high-temperature sapphire nitridation to control polarity. The material is then converted to a regular array of hexagonal pyramids by wet-etching in a KOH solution and subsequently regrown to coalesce the pyramids back into a smooth layer of improved crystal quality. The key points that enable this technique are the control of the array geometry, obtained by exploiting the anisotropic behavior of the wet-etch step, and the use of regrowth conditions that preserve the orientation of the pyramids' sidewalls. In contrast, growth conditions that cause an excessive expansion of the residual (0001Ì ) facets on the pyramids' tops cause the onset of a very rough surface morphology upon full coalescence. An X-ray diffraction study confirms the reduction of the threading dislocation density as the regrowth step develops. The analysis of the relative position of the 0002Ì GaN peak, with respect to the 0006 sapphire peak, reveals a macroscopic tilt of the pyramids, probably induced by the large off-axis substrate orientation. This tilt correlates very well with an anomalous broadening of the 0002Ì diffraction peaks at the beginning of the regrowth step.
RESUMEN
Extended defects, like threading dislocations, are detrimental to the performance of optoelectronic devices. In the scanning electron microscope, dislocations are traditionally imaged using diodes to monitor changes in backscattered electron intensity as the electron beam is scanned over the sample, with the sample positioned so the electron beam is at, or close to the Bragg angle for a crystal plane/planes. Here, we use a pixelated detector instead of single diodes, specifically an electron backscatter diffraction (EBSD) detector. We present postprocessing techniques to extract images of dislocations and surface steps, for a nitride thin film, from measurements of backscattered electron intensities and intensity distributions in unprocessed EBSD patterns. In virtual diode (VD) imaging, the backscattered electron intensity is monitored for a selected segment of the unprocessed EBSD patterns. In center of mass (COM) imaging, the position of the center of the backscattered electron intensity distribution is monitored. Additionally, both methods can be combined (VDCOM). Using both VD and VDCOM, images of only threading dislocations, or dislocations and surface steps can be produced, with VDCOM images exhibiting better signal-to-noise. The applicability of VDCOM imaging is demonstrated across a range of nitride semiconductor thin films, with varying surface step and dislocation densities.
RESUMEN
Porous GaN epitaxial layers were prepared using single-step chemical vapor deposition (CVD) through the direct reaction of ammonia with gallium. The degree of porosity and pore diameters in the resulting GaN were analyzed by means of SEM and AFM and were found to depend on the GaN deposition time. Furthermore, the evolution of the contact angle of a droplet of water located on the surface of these GaN epitaxial layers with the deposition time was investigated. We observe a transition from the hydrophilic regime to the hydrophobic regime for deposition times longer than 15 min. The observed dependence of GaN hydrophobicity on its degree of porosity is discussed and explained in the framework of the Cassie-Baxter model.
RESUMEN
Wavelength-dispersive X-ray (WDX) spectroscopy was used to measure silicon atom concentrations in the range 35-100 ppm [corresponding to (3-9) × 1018 cm-3] in doped AlxGa1-xN films using an electron probe microanalyser also equipped with a cathodoluminescence (CL) spectrometer. Doping with Si is the usual way to produce the n-type conducting layers that are critical in GaN- and AlxGa1-xN-based devices such as LEDs and laser diodes. Previously, we have shown excellent agreement for Mg dopant concentrations in p-GaN measured by WDX with values from the more widely used technique of secondary ion mass spectrometry (SIMS). However, a discrepancy between these methods has been reported when quantifying the n-type dopant, silicon. We identify the cause of discrepancy as inherent sample contamination and propose a way to correct this using a calibration relation. This new approach, using a method combining data derived from SIMS measurements on both GaN and AlxGa1-xN samples, provides the means to measure the Si content in these samples with account taken of variations in the ZAF corrections. This method presents a cost-effective and time-saving way to measure the Si doping and can also benefit from simultaneously measuring other signals, such as CL and electron channeling contrast imaging.
RESUMEN
III-Nitride bandgap and refractive index data are of direct relevance for the design of (In, Ga, Al)N-based photonic and electronic devices. The bandgaps and bandgap bowing parameters of III-nitrides across the full composition range are reviewed with a special emphasis on InxAl1-xN, where less consensus was reached in the literature previously. Considering the available InAlN data, including those recently reported for low indium contents, empirical formulae for InAlN bandgap and bandgap bowing parameter are proposed. Applying the generalised bandgap data, the refractive index dispersion data available in the literature for III-N alloys is fitted using the Adachi model. For this purpose, a formalism involving a parabolic dependence of the Adachi parameters on the dimensionless bandgap [Formula: see text] of the corresponding ternary alloys is used rather than one directly invoking the alloy composition.
RESUMEN
Multiple luminescence peaks emitted by a single InGaN/GaN quantum-well(QW) nanorod, extending from the blue to the red, were analysed by a combination of electron microscope based imaging techniques. Utilizing the capability of cathodoluminescence hyperspectral imaging it was possible to investigate spatial variations in the luminescence properties on a nanoscale. The high optical quality of a single GaN nanorod was demonstrated, evidenced by a narrow band-edge peak and the absence of any luminescence associated with the yellow defect band. Additionally two spatially confined broad luminescence bands were observed, consisting of multiple peaks ranging from 395 nm to 480 nm and 490 nm to 650 nm. The lower energy band originates from broad c-plane QWs located at the apex of the nanorod and the higher energy band from the semipolar QWs on the pyramidal nanorod tip. Comparing the experimentally observed peak positions with peak positions obtained from plane wave modelling and 3D finite difference time domain(FDTD) modelling shows modulation of the nanorod luminescence by cavity modes. By studying the influence of these modes we demonstrate that this can be exploited as an additional parameter in engineering the emission profile of LEDs.
RESUMEN
In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 µm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.
RESUMEN
Non-radiative energy transfer (NRET) can be an efficient process of benefit to many applications including photovoltaics, sensors, light emitting diodes and photodetectors. Combining the remarkable optical properties of quantum dots (QDs) with the electrical properties of quantum wells (QWs) allows for the formation of hybrid devices which can utilize NRET as a means of transferring absorbed optical energy from the QDs to the QW. Here we report on plasmon-enhanced NRET from semiconductor nanocrystal QDs to a QW. Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated NRET from QDs to QWs with varying top barrier thicknesses. Plasmon-mediated energy transfer (ET) efficiencies of up to â¼25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated ET is found to follow the same d -4 dependence as the direct QD to QW ET. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a Förster-like model with the Ag nanoparticle-QD acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated ET efficiencies up to â¼21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor QW emission to enhancement, as well as control of the competition between the QD donor quenching and ET rates.
RESUMEN
We report on the electrical-to-optical modulation bandwidths of non-mesa-etched semipolar (112¯2) InGaN/GaN light-emitting diodes (LEDs) operating at 430-450 nm grown on high-quality (112¯2) GaN templates, which were prepared on patterned (101¯2) r-plane sapphire substrates. The measured frequency response at -3 dB of the LEDs was up to 1 GHz. A high back-to-back data transmission rate of above 2.4 Gbps is demonstrated using a non-return-to-zero on-off keying modulation scheme. This indicates that (112¯2) LEDs are suitable gigabit per second data transmission for use in visible-light communication applications.
RESUMEN
A range of seven different Ag plasmonic arrays formed using nanostructures of varying shape, size and gap were fabricated using helium-ion lithography (HIL) on an InGaN/GaN quantum well (QW) substrate. The influence of the array geometry on plasmon-enhanced Förster resonance energy transfer (FRET) from a single InGaN QW to a â¼80 nm layer of CdSe/ZnS quantum dots (QDs) embedded in a poly(methyl methacrylate) (PMMA) matrix is investigated. It is shown that the energy transfer efficiency is strongly dependent on the array properties and an efficiency of â¼51% is observed for a nanoring array. There were no signatures of FRET in the absence of the arrays. The QD acceptor layer emission is highly sensitive to the array geometry. A model was developed to confirm that the increase in the QD emission on the QW substrate compared with a GaN substrate can be attributed solely to plasmon-enhanced FRET. The individual contributions of direct enhancement of the QD layer emission by the array and the plasmon-enhanced FRET are separated out, with the QD emission described by the product of an array emission factor and an energy transfer factor. It is shown that while the nanoring geometry results in an energy transfer factor of â¼1.7 the competing quenching by the array, with an array emission factor of â¼0.7, results in only an overall gain of â¼14% in the QD emission. The QD emission was enhanced by â¼71% for a nanobox array, resulting from the combination of a more modest energy transfer factor of 1.2 coupled with an array emission factor of â¼1.4.
RESUMEN
Nanostructured semiconductors have a clear potential for improved optoelectronic devices, such as high-efficiency light-emitting diodes (LEDs). However, most arrays of semiconductor nanorods suffer from having relatively low densities (or "fill factors") and a high degree of nonuniformity, especially when produced by self-organized growth. Ideally an array of nanorods for an optoelectronic emitter should have a fill factor close to 100%, with uniform rod diameter and height. In this article we present a "space-filling" approach for forming defect-free arrays of AlN nanorods, whereby the separation between each rod can be controlled to 5 nm due to a self-limiting process. These arrays of pyramidal-topped AlN nanorods formed over wafer-scale areas by metal organic chemical vapor deposition provide a defect-free semipolar top surface, for potential optoelectronic device applications with the highest reported fill factor at 98%.
RESUMEN
We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers.
RESUMEN
Porous GaN based LEDs produced by corrosion etching techniques demonstrated enhanced light extraction efficiency in the past. However, these fabrication techniques require further postgrown processing steps, which increases the price of the final system. Also, the penetration depth of these etching techniques is limited, and affects not only the semiconductor but also the other elements constituting the LED when applied to the final device. In this paper, we present the fabrication of fully porous GaN p-n junctions directly during growth, using a sequential chemical vapor deposition (CVD) process to produce the different layers that form the p-n junction. We characterized their diode behavior from room temperature to 673 K and demonstrated their ability as current rectifiers, thus proving the potential of these fully porous p-n junctions for diode and LEDs applications. The electrical and luminescence characterization confirm that high electronic quality porous structures can be obtained by this method, and we believe this investigation can be extended to other III-N materials for the development of white light LEDs, or to reduce reflection losses and narrowing the output light cone for improved LED external quantum efficiencies.
RESUMEN
We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaN{0001} at 20kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment.