Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282363

RESUMEN

The miR-290 and miR-302 clusters of microRNAs are highly expressed in naïve and primed pluripotent stem cells, respectively. Ectopic expression of the embryonic stem cell-specific cell cycle regulating (ESCC) family of microRNAs arising from these two clusters dramatically enhances the reprogramming of both mouse and human somatic cells to induced pluripotency. Here, we used genetic knockouts to dissect the requirement for the miR-290 and miR-302 clusters during the reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) with retrovirally introduced Oct4, Sox2, and Klf4. Knockout of either cluster alone did not negatively impact the efficiency of reprogramming. Resulting cells appeared identical to their embryonic stem cell microRNA cluster knockout counterparts. In contrast, the combined loss of both clusters blocked the formation of iPSCs. While rare double knockout clones could be isolated, they showed a dramatically reduced proliferation rate, a persistent inability to fully silence the exogenously introduced pluripotency factors, and a transcriptome distinct from individual miR-290 or miR-302 mutant ESC and iPSCs. Taken together, our data show that miR-290 and miR-302 are essential yet interchangeable in reprogramming to the induced pluripotent state. Impact Statement: The process by which somatic cell reprogramming yields induced pluripotent stem cells (iPSCs) is incompletely understood. MicroRNAs from the miR-290 and miR-302 clusters have been shown to greatly increase reprogramming efficiency, but their requirement in the process has not been studied. Here, we examine this requirement by genetically removing the miRNA clusters in somatic cells. We discover that somatic cells lacking either, but not both, of these miRNA clusters can form iPSC cells. This work thus provides new important insight into mechanisms underlying reprogramming to pluripotency.

3.
iScience ; 27(3): 109122, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38414863

RESUMEN

During aging, blood cell production becomes dominated by a limited number of variant hematopoietic stem cell (HSC) clones. Differentiated progeny of variant HSCs are thought to mediate the detrimental effects of such clonal hematopoiesis on organismal health, but the mechanisms are poorly understood. While somatic mutations in DNA methyltransferase 3A (DNMT3A) frequently drive clonal dominance, the aging milieu also likely contributes. Here, we examined in mice the interaction between high-fat diet (HFD) and reduced DNMT3A in hematopoietic cells; strikingly, this combination led to weight gain. HFD amplified pro-inflammatory pathways and upregulated inflammation-associated genes in mutant cells along a pro-myeloid trajectory. Aberrant DNA methylation during myeloid differentiation and in response to HFD led to pro-inflammatory activation and maintenance of stemness genes. These findings suggest that reduced DNMT3A in hematopoietic cells contributes to weight gain, inflammation, and metabolic dysfunction, highlighting a role for DNMT3A loss in the development of metabolic disorders.

4.
Nucleic Acids Res ; 52(1): 4-21, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37993417

RESUMEN

Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.


Cancer cells driven by runaway transcription factor networks frequently depend on the cellular machinery that promotes DNA accessibility. For this reason, recently developed small molecules that impair SWI/SNF (or BAF) chromatin remodeling activity have been under active evaluation as anti-cancer agents. However, exactly when SWI/SNF activity is essential in dependent cancers has remained unknown. By combining live-cell imaging and genome-wide profiling in neuroblastoma cells, Cermakova et al. discover that SWI/SNF activity is needed for survival only during G1 phase of the cell cycle. The authors reveal that in several cancer settings, dependency on SWI/SNF arises from the need to reactivate factors involved in G1-S transition. Because of this role, authors find that SWI/SNF inhibition potentiates cell-cycle exit by retinoic acid.


Asunto(s)
Fase G1 , Neoplasias , Factores de Transcripción , Humanos , Ciclo Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Elementos de Facilitación Genéticos
5.
Trends Endocrinol Metab ; 34(9): 539-553, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37468429

RESUMEN

Changes in maternal nutrient availability due to diet or disease significantly increase the risk of neural tube defects (NTDs). Because the incidence of metabolic disease continues to rise, it is urgent that we better understand how altered maternal nutrient levels can influence embryonic neural tube development. Furthermore, primary neurulation occurs before placental function during a period of histiotrophic nutrient exchange. In this review we detail how maternal metabolites are transported by the yolk sac to the developing embryo. We discuss recent advances in understanding how altered maternal levels of essential nutrients disrupt development of the neuroepithelium, and identify points of intersection between metabolic pathways that are crucial for NTD prevention.


Asunto(s)
Ácido Fólico , Defectos del Tubo Neural , Humanos , Femenino , Embarazo , Ácido Fólico/metabolismo , Tubo Neural/metabolismo , Neurulación , Placenta/metabolismo , Defectos del Tubo Neural/etiología , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/prevención & control
6.
Birth Defects Res ; 115(19): 1785-1808, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37066622

RESUMEN

Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.


Asunto(s)
Diabetes Mellitus , Neoplasias Pancreáticas , Animales , Epigénesis Genética/genética , ARN no Traducido/genética , Páncreas , Neoplasias Pancreáticas/genética
7.
Neural Regen Res ; 18(10): 2141-2146, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37056121

RESUMEN

Type 2 diabetes mellitus patients have a markedly higher risk of developing dementia. While multiple factors contribute to this predisposition, one of these involves the increased secretion of amylin, or islet amyloid polypeptide, that accompanies the pathophysiology of type 2 diabetes mellitus. Islet amyloid polypeptide accumulation has undoubtedly been implicated in various forms of dementia, including Alzheimer's disease and vascular dementia, but the exact mechanisms underlying islet amyloid polypeptide's causative role in dementia are unclear. In this review, we have summarized the literature supporting the various mechanisms by which islet amyloid polypeptide accumulation may cause neuronal damage, ultimately leading to the clinical symptoms of dementia. We discuss the evidence for islet amyloid polypeptide deposition in the brain, islet amyloid polypeptide interaction with other amyloids implicated in neurodegeneration, neuroinflammation caused by islet amyloid polypeptide deposition, vascular damage induced by islet amyloid polypeptide accumulation, and islet amyloid polypeptide-induced cytotoxicity. There are very few therapies approved for the treatment of dementia, and of these, clinical responses have been controversial at best. Therefore, investigating new, targetable pathways is vital for identifying novel therapeutic strategies for treating dementia. As such, we conclude this review by discussing islet amyloid polypeptide accumulation as a potential therapeutic target not only in treating type 2 diabetes mellitus but as a future target in treating or even preventing dementia associated with type 2 diabetes mellitus.

8.
Cancer Res ; 83(10): 1563-1572, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946612

RESUMEN

Extensive studies have focused on the misregulation of individual miRNAs in cancer. More recently, mutations in the miRNA biogenesis and processing machinery have been implicated in several malignancies. Such mutations can lead to global miRNA misregulation, which may promote many of the well-known hallmarks of cancer. Interestingly, recent evidence also suggests that oncogenic Kristen rat sarcoma viral oncogene homolog (KRAS) mutations act in part by modulating the activity of members of the miRNA regulatory pathway. Here, we highlight the vital role mutations in the miRNA core machinery play in promoting malignant transformation. Furthermore, we discuss how mutant KRAS can simultaneously impact multiple steps of miRNA processing and function to promote tumorigenesis. Although the ability of KRAS to hijack the miRNA regulatory pathway adds a layer of complexity to its oncogenic nature, it also provides a potential therapeutic avenue that has yet to be exploited in the clinic. Moreover, concurrent targeting of mutant KRAS and members of the miRNA core machinery represents a potential strategy for treating cancer.


Asunto(s)
MicroARNs , Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Transformación Celular Neoplásica/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Neoplasias/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(6): e2212578120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724256

RESUMEN

Developmental potential is progressively restricted after germ layer specification during gastrulation. However, cranial neural crest cells challenge this paradigm, as they develop from anterior ectoderm, yet give rise to both ectodermal derivatives of the peripheral nervous system and ectomesenchymal bone and cartilage. How cranial neural crest cells differentiate into multiple lineages is poorly understood. Here, we demonstrate that cranial neural crest cells possess a transient state of increased chromatin accessibility. We profile the spatiotemporal emergence of premigratory neural crest and find evidence of lineage bias toward either a neuronal or ectomesenchymal fate, with each expressing distinct factors from earlier stages of development. We identify the miR-302 miRNA family to be highly expressed in cranial neural crest cells and genetic deletion leads to precocious specification of the ectomesenchymal lineage. Loss of mir-302 results in reduced chromatin accessibility in the neuronal progenitor lineage of neural crest and a reduction in peripheral neuron differentiation. Mechanistically, we find that mir-302 directly targets Sox9 to slow the timing of ectomesenchymal neural crest specification and represses multiple genes involved in chromatin condensation to promote accessibility required for neuronal differentiation. Our findings reveal a posttranscriptional mechanism governed by miRNAs to expand developmental potential of cranial neural crest.


Asunto(s)
MicroARNs , Cresta Neural , Diferenciación Celular/genética , Cromatina , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Procesamiento Postranscripcional del ARN
10.
Adv Sci (Weinh) ; 9(34): e2202342, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36257905

RESUMEN

Type 2 diabetes mellitus (T2D) is a major public health concern and is characterized by sustained hyperglycemia due to insulin resistance and destruction of insulin-producing ß cells. One pathological hallmark of T2D is the toxic accumulation of human islet amyloid polypeptide (hIAPP) aggregates. Monomeric hIAPP is a hormone normally co-secreted with insulin. However, increased levels of hIAPP in prediabetic and diabetic patients can lead to the formation of hIAPP protofibrils, which are toxic to ß cells. Current therapies fail to address hIAPP aggregation and current screening modalities do not detect it. Using a stabilizing capping protein, monoclonal antibodies (mAbs) can be developed against a previously nonisolatable form of hIAPP protofibrils, which are protofibril specific and do not engage monomeric hIAPP. Shown here are two candidate mAbs that can detect hIAPP protofibrils in serum and hIAPP deposits in pancreatic islets in a mouse model of rapidly progressing T2D. Treatment of diabetic mice with the mAbs delays disease progression and dramatically increases overall survival. These results demonstrate the potential for using novel hIAPP protofibril-specific mAbs as a diagnostic screening tool for early detection of T2D, as well as therapeutically to preserve ß cell function and target one of the underlying pathological mechanisms of T2D.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Insulina , Polipéptido Amiloide de los Islotes Pancreáticos
11.
Open Biol ; 12(9): 220135, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36128718

RESUMEN

Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.


Asunto(s)
Diabetes Gestacional , Niño , Femenino , Humanos , Embarazo
12.
Birth Defects Res ; 114(16): 983-1002, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365980

RESUMEN

During embryonic development, cells gradually restrict their developmental potential as they exit pluripotency and differentiate into various cell types. The POU transcription factor Oct4 (encoded by Pou5f1) lies at the center of the pluripotency machinery that regulates stemness and differentiation in stem cells, and is required for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Several studies have revealed that Oct4 and other stemness genes are also expressed in multipotent cell populations such as neural crest cells (NCCs), and are required to expand the NCC developmental potential. Transcriptional regulation of Oct4 has been studied extensively in stem cells during early embryonic development and reprogramming, but not in NCCs. Here, we review how Oct4 is regulated in pluripotent stem cells, and address some of the gaps in knowledge about regulation of the pluripotency network in NCCs.


Asunto(s)
Cresta Neural , Células Madre Pluripotentes , Diferenciación Celular/genética , Desarrollo Embrionario , Femenino , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes/metabolismo , Embarazo
13.
Adv Sci (Weinh) ; 8(19): e2005047, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34365742

RESUMEN

Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.


Asunto(s)
Carcinogénesis/metabolismo , Diferenciación Celular/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Factor 1 de Ensamblaje de la Cromatina/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Desnudos , Neuroblastoma/genética , Pez Cebra
14.
Front Cell Neurosci ; 15: 648570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935652

RESUMEN

Neural crest development involves a series of dynamic, carefully coordinated events that result in human disease when not properly orchestrated. Cranial neural crest cells acquire unique multipotent developmental potential upon specification to generate a broad variety of cell types. Studies of early mammalian neural crest and nervous system development often use the Cre-loxP system to lineage trace and mark cells for further investigation. Here, we carefully profile the activity of two common neural crest Cre-drivers at the end of neurulation in mice. RNA sequencing of labeled cells at E9.5 reveals that Wnt1-Cre2 marks cells with neuronal characteristics consistent with neuroepithelial expression, whereas Sox10-Cre predominantly labels the migratory neural crest. We used single-cell mRNA and single-cell ATAC sequencing to profile the expression of Wnt1 and Sox10 and identify transcription factors that may regulate the expression of Wnt1-Cre2 in the neuroepithelium and Sox10-Cre in the migratory neural crest. Our data identify cellular heterogeneity during cranial neural crest development and identify specific populations labeled by two Cre-drivers in the developing nervous system.

15.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066028

RESUMEN

Neural tube closure is a critical early step in central nervous system development that requires precise control of metabolism to ensure proper cellular proliferation and differentiation. Dysregulation of glucose metabolism during pregnancy has been associated with neural tube closure defects (NTDs) in humans suggesting that the developing neuroepithelium is particularly sensitive to metabolic changes. However, it remains unclear how metabolic pathways are regulated during neurulation. Here, we used single-cell mRNA-sequencing to analyze expression of genes involved in metabolism of carbon, fats, vitamins, and antioxidants during neurulation in mice and identify a coupling of glycolysis and cellular proliferation to ensure proper neural tube closure. Using loss of miR-302 as a genetic model of cranial NTD, we identify misregulated metabolic pathways and find a significant upregulation of glycolysis genes in embryos with NTD. These findings were validated using mass spectrometry-based metabolite profiling, which identified increased glycolytic and decreased lipid metabolites, consistent with a rewiring of central carbon traffic following loss of miR-302. Predicted miR-302 targets Pfkp, Pfkfb3, and Hk1 are significantly upregulated upon NTD resulting in increased glycolytic flux, a shortened cell cycle, and increased proliferation. Our findings establish a critical role for miR-302 in coordinating the metabolic landscape of neural tube closure.


Asunto(s)
Ciclo Celular , Glucólisis , MicroARNs/metabolismo , Tubo Neural/metabolismo , Neurulación , Animales , Células Cultivadas , Hexoquinasa/genética , Hexoquinasa/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Tubo Neural/embriología , Fosfofructoquinasa-1 Tipo C/genética , Fosfofructoquinasa-1 Tipo C/metabolismo , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo
16.
J Cell Mol Med ; 23(3): 2103-2114, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30663210

RESUMEN

We engineered and employed a chaperone-like amyloid-binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross-reacted with amyloid beta-peptide (Aß42) protofibrils, but not with Aß40 monomers. These mAbs were further characterized in several in vitro assays, in immunohistological studies of a mouse model of Alzheimer's disease (AD) and in AD patient brain tissue. We show that mAbs obtained by immunizing mice with the NUCB1-hIAPP complex cross-react with Aß42, specifically targeting protofibrils and inhibiting their further aggregation. In line with conformation-specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but not with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils. In summary, we report a method to create mAbs that are conformation-sensitive and sequence-independent and can target more than one type of protofibril species.


Asunto(s)
Péptidos beta-Amiloides/inmunología , Amiloide/inmunología , Anticuerpos Monoclonales/inmunología , Fragmentos de Péptidos/inmunología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Especificidad de Anticuerpos/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Epítopos/química , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/inmunología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Ratones , Nucleobindinas/inmunología , Nucleobindinas/metabolismo , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Células Piramidales/inmunología , Células Piramidales/metabolismo
18.
Stem Cells ; 34(7): 1985-91, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27066911

RESUMEN

The embryonic stem cell cycle (ESCC) and let-7 families of miRNAs function antagonistically in the switch between mouse embryonic stem cell self-renewal and somatic differentiation. Here, we report that the human ESCC miRNA miR-372 and let-7 act antagonistically in germline differentiation from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). hESC and iPSC-derived primordial germ cell-like cells (PGCLCs) expressed high levels of miR-372 and conversely, somatic cells expressed high levels of let-7. Manipulation of miRNA levels by introduction of miRNA mimics or knockdown with miRNA sponges demonstrated that miR-372 promotes whereas let-7 antagonizes PGCLC differentiation. Knockdown of the individual miR-372 targets SMARCC1, MECP2, CDKN1, RBL2, RHOC, and TGFBR2 increased PGCLC production, whereas knockdown of the let-7 targets CMYC and NMYC suppressed PGCLC differentiation. These findings uncover a miR-372/let-7 axis regulating human primordial germ cell (PGC) specification. Stem Cells 2016;34:1985-1991.


Asunto(s)
Linaje de la Célula , Células Germinativas/citología , Células Germinativas/metabolismo , MicroARNs/metabolismo , Transducción de Señal/genética , Biomarcadores/metabolismo , Humanos , MicroARNs/genética
19.
Cell Stem Cell ; 18(1): 104-17, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26748757

RESUMEN

Early development is governed by the ability of pluripotent cells to retain the full range of developmental potential and respond accurately to developmental cues. This property is achieved in large part by the temporal and contextual regulation of gene expression by enhancers. Here, we evaluated regulation of enhancer activity during differentiation of embryonic stem to epiblast cells and uncovered the forkhead transcription factor FOXD3 as a major regulator of the developmental potential of both pluripotent states. FOXD3 bound to distinct sites in the two cell types priming enhancers through a dual-functional mechanism. It recruited the SWI/SNF chromatin remodeling complex ATPase BRG1 to promote nucleosome removal while concurrently inhibiting maximal activation of the same enhancers by recruiting histone deacetylases1/2. Thus, FOXD3 prepares cognate genes for future maximal expression by establishing and simultaneously repressing enhancer activity. Through switching of target sites, FOXD3 modulates the developmental potential of pluripotent cells as they differentiate.


Asunto(s)
ADN Helicasas/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead/fisiología , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/citología , Proteínas Represoras/fisiología , Factores de Transcripción/metabolismo , Acetilación , Secuencias de Aminoácidos , Animales , Sitios de Unión , Linaje de la Célula , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Ratones , Ratones Noqueados , Nucleosomas/metabolismo , Proteínas Represoras/genética
20.
Cell Rep ; 12(5): 760-73, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26212322

RESUMEN

The evolutionarily conserved miR-302 family of microRNAs is expressed during early mammalian embryonic development. Here, we report that deletion of miR-302a-d in mice results in a fully penetrant late embryonic lethal phenotype. Knockout embryos have an anterior neural tube closure defect associated with a thickened neuroepithelium. The neuroepithelium shows increased progenitor proliferation, decreased cell death, and precocious neuronal differentiation. mRNA profiling at multiple time points during neurulation uncovers a complex pattern of changing targets over time. Overexpression of one of these targets, Fgf15, in the neuroepithelium of the chick embryo induces precocious neuronal differentiation. Compound mutants between mir-302 and the related mir-290 locus have a synthetic lethal phenotype prior to neurulation. Our results show that mir-302 helps regulate neurulation by suppressing neural progenitor expansion and precocious differentiation. Furthermore, these results uncover redundant roles for mir-290 and mir-302 early in development.


Asunto(s)
Diferenciación Celular/fisiología , Embrión de Mamíferos/embriología , MicroARNs/biosíntesis , Células-Madre Neurales/metabolismo , Tubo Neural/embriología , Animales , Embrión de Pollo , Embrión de Mamíferos/citología , Ratones , MicroARNs/genética , Células-Madre Neurales/citología , Tubo Neural/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...